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Chapter 7

Outils de Visualisation et de Mesure

Résumé — Dans ce chapitre, nous présentons différents outils nécessaires pour la
visualisation et la quantification de pathologies dans les objets segmentés. Comme
nous l’avons déjà fait dans le cadre d’applications comme l’extraction de surfaces
d’anévrismes dans des images 3DRA, ou bien la visualisation des polypes à la surface
du colon, dans le chapitre 6, notre outil de segmentation de surface basé sur les
ensembles de niveaux et le Fast-Marching permet d’extraire et de représenter des
objets en 3D.
En premier lieu nous parlons brièvement des problèmes soulevés par la visualisation
de surfaces implicites en 3D, et en particulier des spécificités des surfaces définies
par les Level-Sets dans la section 7.1.
En s’appuyant sur un ensemble de trajectoires qui décrivent nos surfaces - comme
le squelette dans le cas de structures arborescentes - nous développons ici des outils
de mesure et d’observation des pathologies. Notamment, nous nous intéressons à la
mesure du volume en section 7.1, et à la mesure de sections de nos objets segmentés
en section 7.2. Ces outils seront utilisés dans toute la suite de cette partie.

Abstract— In this chapter we introduce the different necessary tools for visualiza-
tion and quantification of our segmented objects. The final result of a segmentation,
given by our framework as done in chapter 6 for different applications, can lead to
visualization and measures on the global object.
We first briefly present the problems of visualization of an implicit surface in 3D, and
more precisely the specific drawbacks of the Level-Sets representation in section 7.1.
Assuming that we can extract a whole set of trajectories in a tree-shaped object, we
present the different tools that will measure the pathologies, on the basis of those
trajectories. Important measurements include: volume measurements, as explained
in section 7.1, and objects cross-section measurements, as detailed in section 7.2.
Those tools are useful for the framework developed in the following chapters.



142 7 Visualization and Quantification Tools

7.1 Visualization of 3D segmentation

In the domain of medical image analysis, the segmentation tools we developed are es-
sentially interesting when applied to 3D images. This is the reason why the implemen-
tation we build is designed for this image dimensionality, and that our visualization
efforts were mainly directed to 3D techniques.

In this section the reader will first find a short presentation of the basic notions
of virtual reality needed to understand the content of our work. They are grouped
together in the first subsection, which can be skipped by the readers who are already
familiar with them.

7.1.1 Virtual reality notions

Classically, the basic techniques for computer graphics of virtual reality rely on the
computation of renderings of virtual 3D scenes. A scene is composed of virtual actors,
lights and a camera.

What are actors ?

The term actor covers everything that might be seen when properly enlighten. For
instance, in a virtual reality model of a house, each piece of furniture would be modeled
by a specific actor, and so would be the floors, walls, stairs, etc.

Traditionally, the shape of a 3D actor is explicitly modeled by a set of graphic
primitives: points, lines and surface patches. In recent and advanced models, the
surface of an actor is sometimes modeled using implicit functions.

According to the complexity of the modelization, the rendered appearance of the
surface of an actor can depend on many and various parameters:

• the position and orientation of the camera relatively to the actor surface;

• the properties of the surface which are taken into account by the illumination
model;

• the positions, orientations, colors and attenuation factors of the lights, which
can be at finite distance (punctual lights) or infinite distance;

• the positions and orientations of the other actors which may cause occlusions,
projected shades, or even reflect light sources in advanced models.

What is an illumination model ?

The illumination model is the set of equations used to compute the color and bright-
ness of a point on the surface of an actor according to:

• the angles of incidence, intensities and colors of the incident rays of light;

• the modeled properties of the surface;

• the angle of the departing ray of light.
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The surface properties usually include colors, an opacity factor, reflectance, a
specular power parameter, etc...

In addition to the illumination model, a shading model can be used to avoid the
faceted aspect of polygonal surfaces. The most popular shading models are Gouraud
and Phong shadings, although Phong shading is rarely used because of its computa-
tional cost.

What is the exact role of the camera ?

The camera plays the same role as in the making of a movie: the rays of light which
encounter the objective determine the rendered (i.e. virtually acquired) 2D image.
The usual parameters of a camera are its position, orientation, and two of the following
parameters: view angle, focal distance and image size. The rendered 2D image is a
projection of the illuminated actors in the focal plane of the camera.

Object-based and image-based rendering

The construction of the 2D image acquired by the camera may be object-based or
image-based. In the case of object-based rendering, the actors are rendered one by
one by applying the illumination model and the projection equations to the graphic
primitives they are composed of. The occlusions are generally dealt with using a so-
called Z-buffering technique: the final image is the result of the superposition of layers
which correspond to different depths (Z-coordinate) in the scene. The points that are
the closest to the camera are visible, others are more or less occluded according to
the opacity of the points that are in front of them.

Object-based rendering is not a recent technique, but it is fast, rather simple,
and can be accelerated by specialized hardware devices. For example, OpenGL hard-
ware implementations make interactive renderings of simple scenes possible even on
a low end PC. The main drawbacks of object-based rendering are that photo-realistic
images are difficult to achieve, especially in the case of complex scenes, and that mul-
tiple reflections are usually not taken into account. Moreover the actors have to be
explicitly represented using graphic primitives.

In the case of image-based rendering (or ray-tracing) the color and brightness
of each point of the rendered image is computed by tracing a ray starting from this
point. The illumination model is invoqued when the ray hits an actor, and reflections
on several actors are even possible before reaching a light source. In the most advanced
computer graphics software products based on ray-tracing, the actors can also have
implicit representations.

The images produced by ray-tracing can be of very high quality, but the major
drawback of image-based rendering is the computation cost related to the calculation
of the rays.

7.1.2 Visualization of a level-set

Visualizing a level set is nothing more than visualizing an iso-surface in 3D, or an
iso-contour in 2D. More generally the hypersurface which needs to be visualized is
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the zero-level set of φ(·, t), where t is fixed, which is a function defined over the image
domain Ω ⊂ IR3 in our applications. In figure 7.1-left, the surface of a sphere is
implicitly defined by the signed distance to itself.

Figure 7.1. The marching cubes algorithm: Left image represents the iso-
values of the signed distance to a sphere in 3D; middle image represents the different
configuration encountered by the Marching-Cubes ; right image is a smooth surface
rendering of the triangles that approximate the implicitly defined sphere of figure 7.1-
left given by the algorithm.

The 3D visualization of the zero level-set surface by object-based rendering algo-
rithms cannot be done directly. An explicit representation of the surface by polygonal
graphic primitives has to be computed first.

Several approaches are possible for the computation of a polygonal approximation
to an iso-surface. The most popular of all is certainly the Marching-Cubes (see [104]),
which computes a triangulated surface. In each cube formed by eight contiguous voxel
centers, the values of the implicit function at the vertices of the cube are compared
to the specified iso-value. The possible configurations are classified (see figure 7.1-
middle), and a look-up table is used to quickly give a triangulated approximation of
the intersection of the iso-surface with the currently examined cube. All the cubes
are examined one by one in a raster-scan “marching” fashion, in opposition to the
algorithms which try to “track” the iso-surface.

But sometimes the Marching-Cubes algorithm generates triangle sets containing
holes, due to ambiguous cases. Many authors have proposed solutions, for example
the marching tetrahedra algorithm in [166].

However, we chose the Marching-Cubes for reasons of accuracy, reliability, and
(above all) simplicity of use since efficient implementations of it are available. It
provides an accurate triangulated surface whose precision leads to high-quality ren-
derings, like in the endoscopic images shown in figure 7.2.

7.1.3 Problem with the Marching-Cubes

A classical evolution equation defined by ∂φ
∂t+V .∇φ = 0 makes no distinction between

the level sets of φ. They are all attracted by the same asymptotic hypersurface
provided that they are sufficiently “close” to it. As a result, φ gets very steep in its
vicinity, which causes the Marching-Cubes to give poor and aliased results.
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Figure 7.2. Surface rendering in the aorta: First row shows frames of an
endoscopic movie in an aorta MR dataset. Second row is the wire-frame version of
this movie, given by the Marching-Cubes where we can see the whole anatomical
object and its several branches by transparency

In fact, the level-sets do not remain a distance function in many cases (an ex-
ception is a constant advection flow, for example see figure 4.6). This property at
initialization, is lost after several iterations. Figure 7.3 shows two examples: the first
one follows a balloon forces, which is positive inside a circle, and negative outside;
the second one is a flow composed of a positive balloon force and a boundary based
force, which stops the level sets of φ.

7.1.4 Restoring the distance function

In conclusion, the solution to the classical Hamilton-Jacobi evolution equation pro-
posed in [135] is not a distance function. But this property is the hypothesis of several
numerical techniques to accelerate convergence, like the fast geodesic active contours
proposed in [65] and [67]. Moreover, the practical application of the level-set method
is plagued with such questions as: when do we have to “reinitialize” the distance func-
tion? How do we reinitialize” the distance function. In [163], the author suggests that
when the zero-level set evolves in the vicinity of the borders of the narrow-band, the
distance to the zero-level set must be re-initialized. For the authors of [68, 69], this
problem reveals a disagreement between the theory and its implementation, the au-
thors propose an alternative to the use of Hamilton-Jacobi evolution equation which
eliminates this contradiction. In order to reach this goal, they look for a function
B : IR3 × IR+ → IR such that ∂φ

∂t = B and which satisfies the two constraints

• φ is a distance function

• ∂φ
∂t = βN where β is the velocity, and N the inward unit normal.

Those constraints lead to the new relation ∇φ · ∇B = 0. This efficient method
increases the computing cost.
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Figure 7.3. Loosing the distance function when converging: First row shows
consecutive iterations of the level-sets of a geodesic active contour that minimizes
the distance to a circle; second row shows consecutive iterations of the level-sets of
a geodesic active contour that inflates according to a balloon force with boundary
based forces on the same circle.

Following the author of [84], we include the a restoration force in the Hamilton-
Jacobi flows, which not only ensures the evolution of φ(0, t) given by equation (4.6),
but also prevents φ(·, t) from getting too steep in the vicinity of φ(0, t). This new
partial differential equation is given by:

∂φ

∂t
+ V .∇φ = µ . sgnθ(φ(x, t)) . (1− ‖∇φ‖) (7.1)

where V is the flow defined by equation (4.6) and where the modified signed function
sgnθ is defined by:

sgnθ(y) =







−1 if y < −θ
y
θ if − θ ≤ y ≤ θ
1 if θ < y

The new differential operator introduced in equation (7.1) is inspired from the
distance function restoration operator used in [170]. The modification of the sign
function avoids the apparition of oscillations during the numerical approximation of
equation (7.1), without having to introduce numerical flux or slope bounds. Oth-
erwise, as signaled in [84, page 56], these oscillations are responsible for short but
annoying displacements of the zero-level set of φ(·, t). And the author of [84] pro-
poses to use another scheme, originally presented in [159], which inflates and deflates
successively the level-set in order to extract the distance to the zero level-set, without
displacing it. We choose not to add another bunch of computations to our method,
and decide to use method of [170].

The parameter denoted by θ can be set to a fixed value (we used θ = 10 in our
experiments). The parameter µ defines the weight of the newly introduced differential
operator, and has to be adapted according to the other forces parameters. If µ is too
small, then φ(·, t) is likely to get too steep for the Marching-Cubes to give good
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results. But too high values of µ will increase the global CFL number, and thus cause
the convergence of φ to be slower. In practice, it is not difficult to find a good value
for µ.

The use of this new equation (7.1) is illustrated in figure 7.4, where the flow drives
the zero level-sets to a sphere.

Figure 7.4. Aliasing when converging: Left image is the surface extracted at
convergence when the level set matches the surface; Right image is the same result
including a force to restore the distance function.

7.1.5 Volume versus Surface Rendering

Volume rendering is an advanced image-based visualization technique based on the
integration of a transfer function along rays cast in a dense volume (i.e. a 3D image).
The transfer function is generally based on the intensity and gradient of the image,
and gives an opacity value for each voxel of the image. Surface (see figure 7.5-left)
versus Volume (see figure 7.5-right) rendering is still an open question, and the choice
between those two methods depends on the application.

With the shape extraction techniques we use, surface rendering has several ad-
vantages:

1. with the segmentation framework we have developed, the visualization of the
anatomical object with surface based rendering does not need any input, any
interaction (unless the color of the surface can be considered as an important
parameter);

2. parameterization-free means robustness. Volume-based rendering relies on the
critical choice of a suitable transfer function. Surface-based rendering is the
direct representation of the surface extracted by the segmentation whereas the
volume-based rendering relies on the user perception of the dataset;

3. Surface rendering is fast: when the triangulation has been extracted with the
Marching-Cubes , endoscopic fly-through, like in figure 7.2 are generated in real-
time, and OpenGL hardware implementations, now available on any low end
PC, accelerate the computations. The computational cost of volume rendering
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Figure 7.5. Comparing surface and volume rendering in the aorta: Left
image is a surface rendered view generated with the Marching-Cubes on the final
segmentation obtained; right image is a threshold based volume rendering view at
the same location in the dataset.

is very high, and special hardware devices that might overcome this lack of
performance are still under development.

Moreover, several artifacts may occur when using Volume Rendering on volume
data (among them, aliasing, stair-casing and slicing, see [146]).

For all those reasons, we used the surface-based rendering for visualization, as
well for inspection of results, as for endoscopic viewings. Notice that if surface-based
rendering is parameter-free, it critically relies on the result of the segmentation.

7.2 Measurement Tools

The main target of our path and shape extraction framework is to measure pathologies
in tube-shaped objects, like aneurysms in brain vessels, and polyps in the colon. We
detail in this section the different tools used for quantification of those pathologies,
that are characterized by their sections and volumes. Extracting the shapes of our
objects, with the Marching-Cubes [104], we use a consequence of the Gauss theorem,
discretized on the vertices of the triangulation obtained.

7.2.1 Gauss Theorem

As classically [9], volume and section measurements are based on Gauss theorem:

Theorem 7.1 (Gauss) Let Ω be a subset of IRd, let its boundary Σ be a closed

surface, and U a differentiable vector field, then:

∫

Ω

divU dx =

∮

Σ

U.N dσ

where N is the outward normal to Σ.
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A consequence of Gauss theorem is that the volume V(Ω) of Ω can be simplified
as an integral over the boundary Γ

V(Ω) =
∫

Ω

dx =
1

3

∫

Ω

div (x) dx =
1

3

∮

Γ

x.N dσ. (7.2)

7.2.2 Volume Measurement

We assume that a 3D tubular structure has been segmented with a level set method
and that φ(·, t) is known at convergence and denoted by φ̃. We also assume that
centered paths have been computed in the tubular structure.

The volume to be measured is defined by the user who chooses a path and specifies
two points p1 and p2 on this path. The computed volume is the volume of the interior
region of the tubular structure limited by the two plane section S1 and S2 associated
to (p1,Π1) and (p2,Π2) and defined by Si = Πi ∩ φ̃−1(IR−) i = 1, 2. Here is a
step-by-step summary of our algorithm, which is illustrated by figure 7.6.

p1
n1

p2

n2

S1

S2

PI1

PI2

Figure 7.6. Volume measurement diagram.

• we compute tangent vectors to the path at p1 and p2, which are the normal vectors
−→n1 and −→n2 to the plane sections S1 and S2;

• the equations (p1,
−→n1) and (p2,

−→n2) of the plane sections S1 and S2 are considered;

• the region of interest is actually the intersection of three subsets of IR3, which are
φ̃−1(IR−) and two half-spaces limited by the plane sections;

• we deduce the signed distance functions Ψ1 and Ψ2 to the two half-spaces Π1 and Π2

from the equations of the plane sections
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• Considering that the shape of the object of interest can be complex, and lead to
problems of intersection between planes Π1 and Π2 (see figure 7.8), we define a function
Ψ the following way

1. it is initialized with Ψ(x, y, z) =
√
3, ∀(x, y, z) in the image domain;

2. starting from the path point p1 (respectively p2), we apply a region growing
algorithm, that labels only the voxels v which have |Ψ1(v)| <

√
3, (respectively

|Ψ2(v)| <
√
3) and for those voxels, we set Ψ(v) = Ψ1(v) (respectively Ψ(v) =

Ψ2(v));

3. starting from any path point p not labeled between p1 and p2, we apply a con-
nectivity filter that visits only the voxels where φ̃(v) <

√
3 and that are not

already visited by the first connectivity filter; and for each voxel visited we set
Ψ(v) = φ̃(v); it enables to avoid including the interior of undesired parallel struc-
tures in the region of interest;

• the region of interest is equal to Ψ−1(IR−), and a polygonal approximation of its
boundary is computed by extracting the zero-level set of Ψ;

• the volume of the region of interest is computed using the following decomposition of
equation (7.2) on the polygons of the extracted surface:

V(Ψ−1(IR−)) =
1

3

∑

i

gi.Ni σ(Pi)

where gi, Ni and σ(Pi) respectively denote the center of gravity, the outward normal
and the surface of the polygon Pi.

The overall computation times are very short (less than 3 seconds for a 256 ×
256× 60 image on a SunBlade 100), and the results on basic geometric primitives are
excellent in terms of accuracy.

7.2.3 Example of volume measurement: an aneurysm

In this case, shown in figure 7.7, where the problem studied is the cerebral aneurysm
of figure 6.4, the measurement of the aneurysm volume is done using one trajectory
extracted inside a mask defined by the segmentation obtained in figure6.6. Taking two
positions along the trajectory, we can easily define a volume of interest that contains
the aneurysm. The volume shown in figure 7.7-right is not restricted to the aneurysm
itself, and contain the surrounding vessel. But a good approximation can be given, by
subtracting an approximate vessel volume, using the surfaces of the sections S1 and
S2. Advantage of using our connectivity algorithm to obtain Ψ(IR−) instead of taking
the region delimited by φ̃−1(IR−) and the two half space Π1 and Π2 determined by
the distance functions Ψ1, Ψ2 is illustrated by figure 7.8 on the same dataset.

7.2.4 Section Measurement

We can also apply equation (7.2) in 2D to evaluate the surface limited by a closed
planar curve. In order to illustrate this method, we show its application to a phantom
dataset.

The data, shown in figure 7.9-left is the acquisition of a cube of Perspex (a type
of plastic) with an aluminum rod in it, inside a dead human head. It was acquired
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Figure 7.7. Measuring the volume of an aneurysm: The dataset used for this
segmentation is shown in figure 6.4. Left image is the segmented object obtained in
figure 6.6 by combining Fast-Marching and Level-Sets methods; middle image shows
the multiple paths extracted; right image shows a sub-volume of the aneurysm which
has been isolated.

with the Philips Integris 3D-RA system. A MIP view in figure 7.9-right enables to
see the variable section of the aluminum rod.

Following the results of chapter 6, we first segment the phantom with the Fast-
Marching algorithm, starting from one point at the top of the aluminum rod. Computing
the Euclidean path length while propagating, as detailed in section 2.2.3, it is very
easy to extract the largest centered path, using the method described in section 2.3,
with the thresholded distance D̃ to the object borders. This path extracted is visible
in figure 7.10-middle, by transparency. In a few iterations, the Level-Sets algorithm,
with region-based forces, gives the result shown in figure 7.10-left.

In the experimental tool we built, the user specifies a particular path and obtains
the section of the tubular structure according to the length of the path. The path
is supposed to have a discrete representation, i.e. is represented by a list of points.
Here we give a summary of the performed calculations for each point of the path:

• the normal of the section plane is computed using an approximation of the
tangent vector to the path;

• an orthonormal base of the section plane is deduced;

• a rectilinear 2D grid, centered on the current path point, is defined on the
section plane;

• at the center of each cell of the grid, the value of φ̃ is computed by interpolation;

• an adequate algorithm is used (we used the Marching Squares) to compute an
approximation of the zero iso-contour in the 2D grid;

• the surface enclosed in the resulting polygonal line, which in our example is
drawn on the surface in figure 7.10-right, is computed thanks to a decomposition
of equation (7.2) on the polygonal line.
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Figure 7.8. Advantage of the connectivity algorithm: left image shows the
result of computing the intersection of φ̃−1(IR−), Ψ−1

1 (IR−), Ψ−1
2 (IR−). Right image

is the representation of Ψ(IR−) superimposed on the segmentation along the same
trajectory, between the same extremities.

Figure 7.9. 3D-RA Phantom: On the left image are shown three orthogonal
views of the perspex cube acquired with a 3D-RA system; right image is a MIP
view of this data-set.

Like in the case of volume measurements, the computation times are very short,
and the algorithm gives very accurate measurements of basic geometric primitives.
Concerning the phantom problem, we have computed this section at each path point
(see figure 7.11). Figure 7.11 shows the measures done along the path displayed in
figure 7.10-right. On the graphic, we have displayed the several real dimensions of the
aluminum cylinders, and we have also displayed the interval of deviation of 2% that
was indicated by a study on the accuracy of the calibration, the distortion correction,
and the reconstruction of the 3D-RA system [83]. The section measurements of the
segmented object show that our method gives results which lie in those intervals,
when the radius is more than one millimeter.
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Figure 7.10. Segmentation result on the 3D-RA Phantom of figure 7.9:
Left image is the segmented object with the combination of Fast-Marching and
Level-Sets methods; middle image is the same object with opacity < 1. and the
path extracted; right image shows the intersection of the phantom surface with the
section plan for measurements.
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Figure 7.11. Section measurements along the segmented phantom of
figure 7.10: It represents the values of the section across the trajectory extracted,
with the deviation of 2% superimposed.





Chapter 8

Extraction de Structures

Arborescentes

Résumé — Dans la partie précédente nous avons présenté un algorithme mettant
en oeuvre une collaboration entre le Fast-Marching et les Level-Sets pour la seg-
mentation. Dans ce chapitre, nous souhaitons présenter une application de cette
collaboration spécifiquement dédiée aux structures arborescentes du type arbre vas-
culaire.
Tout d’abord nous montrons comment le Fast-Marching permet de fournir une
présegmentation rapide et précise pour les structures arborescentes dans la sec-
tion 8.3.
Nous utilisons ensuite les Level-Sets de la même manière que dans la section 5.4 de
la partie précédente.
Finalement nous montrons comment le Fast-Marching, déjà utilisé pour l’extraction
de trajectoires dans la partie I, permet aussi d’extraire plusieurs trajectoires et
de remonter à l’information d’arbre ou de squelette d’un objet tubulaire avec em-
branchements multiples.

Abstract — In the previous part I, we detailed an algorithm using Fast-Marching

and Level-Sets in a collaborative manner for object segmentation. In this chapter, we
introduce an application of this collaboration specifically adapted to tree anatomical
structures, like vascular or arterial tree. First of all, we demonstrate in section 8.3
the ability to build a fast and accurate pre-segmentation for those tree structures
using a dedicated Fast-Marching algorithm.
We further apply the Level-Sets, as in section 5.4, for converging to a more accurate
solution.
Finally, we show in section 8.4 how the Fast-Marching ability to extract trajecto-
ries, as used in part I, can be extended to the simultaneous extraction of multiple
trajectories, and to obtain the underlying tree structure of a tubular anatomical
shape with several branches.
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8.1 Introduction

In the first part of the thesis, we have implemented several techniques to extract a
trajectory inside a tubular structure. We have shown application of this fast mini-
mal path-extraction process to automatic and interactive methods to extract lineic
structures in images. In the second part of the thesis, we have combined fast and
accurate methods for shape extraction, using the same kind of grey-weighted distance
transform algorithms. We have proved the ability of those techniques to extract sur-
faces, and to emphasize pathologies, in several applications. In the last part of the
thesis, we now want to integrate the path and surface extraction algorithms, in order
to present an accurate global framework for the segmentation, the visualization, and
the quantification, of anatomical objects. In the previous chapter, we have detailed
the algorithmic techniques to obtain representations and measures of our anatomical
objects, based on extracted primitives of our objects like shapes and skeletons. In
this chapter, we will present the basic framework, and extend its possibilities to the
detection of tree-like structures, and their corresponding set of multiple trajectories,
in order to enhance measures and visualization of pathologies of any tube-shaped
object.

This chapter will be illustrated by applications of the algorithms presented on the
segmentation and quantification of vessels in contrast-enhanced 3D medical images.

8.2 Motivation

We have seen in part II a method to use front competition for image segmentation.
This process involved to visit the whole image domain, and was not tuned for a
particular category of objects. Moreover, in huge images, as multi-slice CT scanners
(see application to lungs images in chapter 9.2), the visit of the whole image cannot
be done in interactive time.

8.2.1 Tree extraction

In this chapter, we are focusing on the extraction of thin tubular structures. Our
algorithms can be dedicated to this particular category of tube-shaped objects. If the
propagation of a front could be restricted to the part of the image occupied by those
structures, the computing time could be divided by almost 5, since vessels in a typical
MR-Angiography image do not exceed 10% of the whole volume.

In chapter 2, we have developed an algorithm that can be the basis of this kind
of tubular shape extraction object: a technique to evolve a front inside an object of
interest and compute at the same time the Euclidean distance to the start point. It
was used to reduce the user interaction to locating only one extremity of the path
inside a tubular structure. This Euclidean distance can be used to stop the front
propagation inside the desired object. If we have precise knowledge of its length, we
can decide to stop when this given length has been reached in the expression of the
Euclidean path length computation, as explained in section 2.2.3. The result of this
technique is shown in figure 8.1.
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Figure 8.1. Segmenting the colon volume with simple front propagation:
as in the virtual endoscopy facility, the user locate a starting point at one particular
recognizable part of the colon, then a front is propagated from this seed point until
a maximum path length is reached. Left image represents the datasets where the
intersection with the segmented object is visible in pink. Right image is the 3D
volume rendering of the final segmentation.

However, classical segmentation problems do not provide an excellent contrast
like the air-filled colon on a CT scanner, and the propagation cannot stick to the
object walls, as it is shown in figure 3.6. For example, if we apply the same kind
of propagation in the dataset shown in figure 3.12 for the endoscopy application in
chapter 3, the corresponding wave propagation looks like figure 8.2. The front floods

Figure 8.2. Wave propagation inside the aorta MR dataset: These three
images represent different steps of the propagation inside the aorta MR dataset
using Eikonal equation equation with a potential similar to the one defined for the
endoscopy application (a simple function of the grey levels either linear or non-
linear).

outside the object and cannot be used as an initialization step for a more complex
segmentation, like the combination of the Fast-Marching and the Level-Sets which
was presented in the previous part.

In the following section, we will present a new algorithm, based on the Fast-
Marching and dedicated to a quick and dirty segmentation of the tree structures in
3D medical images.
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8.3 Design of an adequate initialization algorithm

We have shown the possibility to provide efficiently an initialization for more com-
plicated methods in the previous part of the thesis. Setting up a framework for the
visualization and the quantification of thin tubular structures, based on the same
combination of the Fast-Marching and the Level-Sets, we show in this section how
the previous initialization step, which is not tuned for this kind of thin and long
objects, can be specifically optimized for this target.

8.3.1 Propagation Freezing for Thin Structures

Freezing a voxel during front propagation is to consider that it has reached the bound-
ary of the structure. When the front propagates in a thin structure, there is only a
small part of the front, which we could call the “head” of the front, that really moves.
Most of the front is located close to the boundary of the structure and moves very
slowly. For example voxels that are close to the starting point, the “tail” of the front,
are moving very slowly. However, since the structure may be very long, in order for
the “head” voxels to reach the end of the structure, the “tail” voxels may flow out of
the boundary since their speed is always positive. This is illustrated in the example of
figure 3.12. If we apply fast marching in the dataset shown in figure 3.12-top with a
potential based on the gray level with contrast enhancement the corresponding wave
propagation looks like figure 8.2. The front floods outside the object and does not
give a good segmentation.

For these reasons, it is of no use to make some voxels participate in the computa-
tion of the arrival time in Eikonal equation by setting their speed to zero, which we
call Freezing. First step is to design the appropriate criterion for selecting voxels of
the front which needs Freezing.

Concerning the application to the tree tracking, the several improvements brought
by this method are

• to accelerate the computations, by visiting a very small number of voxels during
propagation;

• to enable the segmentation of thin tubular structures;

• therefore enabling the centering inside those tubular structures.

First step is do design the appropriate criterion for Freezing voxels of the front.
We illustrate this Freezing principle on a synthetic branching structure in 2D.

Synthetic test problem

A synthetic example of a tree structure is shown in figure 8.3. In this case, setting an
initial seed point at the hierarchy, we would like to extract in a very fast process the
multiple branches of the structures, and its corresponding skeletonization, in a single
process. Figure 8.3 shows the result of the classical front propagation technique with
the Fast-Marching coupled with a maximum Euclidean path length stopping crite-
rion. The action map displayed clearly indicates that the domain visited is a whole
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Figure 8.3. Synthetic test problem: The left image is the medium where a front
has been propagated, starting at the root of the three branches, and stopping when
a maximum distance criterion of 300, computed according to method described in
section 2.2.3, has been reached; Right image is the corresponding action map.

“blob-like” structure where the underlying tubular shape is somehow lost. Therefore,
tracking a minimal path from the regional maxima of the action map will not lead
for sure to paths that stay inside the object of interest. It emphasizes the little use
of this method, without a clear constraint on the domain of points visited.

Using Time for Freezing

The heuristic presented in this section is to discriminate the points of the front that
are spending a long time in the propagating front, i.e. points that are visited but
whose action is not frozen, in the sense defined in table 2.1.

Unfortunately, this criterion is very difficult to manage, as shown in figure 8.4.
The results are non-predictable, and this is probably because the time spent in the

Figure 8.4. Instability of the Time criterion for Freezing: Left image is the
action map obtained with a maximum time criterion of 100 iterations; Other images
are freezing maps (white pixels) with respectively from left to right 100, 80 and 60
iterations as maximum time spent in the front.

front for a voxel is related to the local cost of the propagation at this voxel, but do
not have any relation with the position of the voxel relatively to the object that we
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are trying to segment.

Using Distance for Freezing

The distance to the start point is a direct output from the method we already devel-
oped for reducing user-intervention in the Virtual Endoscopy process in sections 2.2.3
and 3.1. It seems far more “natural” to use the distance to the starting point, or
relatively to the most far propagating part of the front, since this notion is com-
pletely embedded in the topology of the object we are trying to extract: the section
of a tube-shaped objects must be small towards its extent. We must discriminate the
points of the front that are near the initializing seed points while other parts of the
front are already far. It will prevent from flooding in non-desired area of the data.

We can fix several criterion for the Freezing based on the distance. Knowing
the current maximum Euclidean path length dmax in the front propagation process
we can decide that a voxel v of the propagating front (i.e. Trial voxels) should be
removed from the front (i.e. set as Alive voxel):

• if D(v) < dmax/α, with α ≥ 1 user-defined; or

• if D(v) < max (dmax− d̃, 0), with d̃ > 0 chosen.

The results are now predictable, in the sense that the Euclidean distance to the
starting point is a measure which contains information about the geometry of the
surface extracted, and in particular its length. This is less related to the local cost of
the propagation in each voxel, and more to the position of this voxel in the object.
This distance criterion has proven reliability as well in 2D as in 3D, and we worked
upon its implementation in the following. A 2D example on the synthetic test is
shown in figure 8.5.

Figure 8.5. Using Distance for Freezing: Left and middle images are action
maps with distance criterion of respectively 100 and 50; right image is a zoom on
the freezing map for a distance criterion of 50: the pruned points are set in green.



8.3 Design of an adequate initialization algorithm 161

Algorithmic implementation of the Freezing

Once the criterion has been chosen, at each time step we insert our visited points both
in the classical action related heap, and in another data-structure where the ordering
key is the criterion. As for the action, we can use a min-heap data-structure, since
the partial ordering provided is sufficient.

At each iteration, we are able to remove all the points whose keys are greater/lower
than this criterion, starting from the minimum/maximum element in the tree. It can
be implemented easily for the time criterion by recording the iteration at which any
point has been inserted in the heap, and to store this time in another min-heap data-
structure. Therefore, the element at the top of the heap will still be the point that
has spent the longest time without being evolved to the Alive set. For the distance
criterion, the min-heap key is the computed distance, which means that the element
at the top of the heap will still be the point that is the nearer Trial point to the
starting point.

In the following is detailed an algorithmic implementation of the Freezing with
the second criterion for the distance information.

Definition

• a starting point p0, located at the root of the tree structure;

• the usual set of data-structures for front propagation, including an action map A, one
min-heap structure HA and a penalty image P which will drive the front propagation,
and which is a function of the position only;

• a distance map D to compute the Euclidean minimal path length, as explained in
section 2.2.3;

• another min-heap data structure HD, where the ordering key for any point p is the
value of D(p), which means that the first element of this heap will be the Trial point
with smallest distance D;

• several counters dmax, d̃, dstop

Initialization

• initialize the classical front propagation method, setting A(p0) = D(p0) = 0 and
storing the seed point p0 in both min-heap structures HA and HD;

• dmax = 0

• d̃ and dstop are parameters for tuning the algorithm (user defined).

Loop: at any iteration

• Let pmin be the Trial point with the smallest action A;
• proceed according to the classical Fast-Marching algorithm, by examining its neigh-

bors, and updating the min-heap HA with the new action values computed;

• take dmax = max (dmax,D(pmin));

• consider qmin, the first element of HD, being the Trial point with the smallest distance
D. While D(qmin) < max (dmax − d̃, 0) do

– set D(qmin) = A(qmin) =∞;

– set qmin in the Alive set, then qmin will not be used for computing the ac-
tion/distance at its neighbors location.
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– delete qmin in both HD and HA;

• if dmax > dstop, exit the loop.

This heuristic is to discriminate the parts of the front that are propagating slowly,
by recording the maximum distance which has been traveled, and compare it to the
distance which has been traveled by this parts. If the ratio between those two distances
is two important (> given threshold), we ”freeze” those parts by setting there speed
artificially to zero. It enables to stay inside the object when it is long and thin like
tubular structure, as shown in figure 8.5. The domain visited by our algorithm is
slightly smaller than the previous one (figure 8.4-right) and this domain shortens
with the distance criterion, when we compare left and middle images in figure 8.5.
The figure 8.5-right clearly demonstrates than the Freezing principle discriminates
the points located far from the propagating fronts.

Illustration on the Vascular tree extraction problem

The method explained previously is very useful when it is used for vascular segmen-
tation. Initialization step is therefore performed in a very fast manner by just setting
a seed point at the top of the tree hierarchy. Figure 8.6 displays results of this algo-
rithm. The distance threshold is a parameter which is not very sensitive: we generally

Figure 8.6. Using Distance for Freezing in the Aorta: From left-to-right,
images show iterations of the segmentation process; the propagating front is in red,
and the frozen voxels are in white.

take a value related to the a priori dimensions of the object. This threshold must be
more important than the assumed maximum section of the object. It will approxi-
mately represent the volume of points bounded by connected envelope of the front
voxels that are not frozen.

8.3.2 Suitable stopping criterion

Having designed an adequate criterion for Freezing the unwanted parts of the front
that could lead to “flooding” of the evolving wave in other parts of the image, we now
explain our strategy to stop automatically the propagation.

Previous strategy was to use a maximum Euclidean path length to stop propaga-
tion, like for the virtual endoscopy application. In Virtual Endoscopy , the user can
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set both extremities of the trajectory, if he has an a priori knowledge of the anatom-
ical objects. Extraction of tree-like structures cannot use such an assumption: the
number of branches in our structure is undefined, only assumption being that the user
can fix a point inside the structure, at the beginning of the segmentation process.

The Freezing process will provide a criterion which is independent of the number of
different branches to recover. If we plot the maximum distance dmax of section 8.3.1,
as a function of iterations while propagating, we will observe the following profile
shown in figure 8.7. We clearly see that this distance increases linearly until a big
decrease of the slope appears. It is important to notice that this shock indicates when

Figure 8.7. Using Distance for Stopping propagation in the Aorta: The
images of the propagating fronts of figure 8.6 are super-imposed on the evolution of
the maximum distance crossed by the front propagation across iterations; it empha-
sizes that the decrease in the slope is related to the “flooding” out the aorta.

the front flows out of the object at “heads” of the front. We decide to stop front
propagation at this particular time. During the first part of the plot, the function is
quasi-linear. The slope is directly related to the section area of the tubular object.
By definition of Fast Marching, the number of iterations is equal to the number of
voxels that are alive. It means that passing through a certain length in the aorta
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implies to visit a number of voxels proportional to the length.
Let us assume that the global section of our aorta is constant in our dataset. This

is approximately true in large parts, but becomes a wrong assumption in the very thin
parts of the vessels and arteries. But we can assume that the front propagates at the
same speed inside the object. Therefore, the number of voxels visited is proportional
to the section area. Then the slope collapse can be easily detected using a simple
threshold on the slope, depending on the object we want to extract. Even if there are
aneurysms in the data set, and even if the mean section of the object increases with
the depth, we can assume that we do not want to extract an object which is twice the
maximum section. We could then derive a criterion on the maximum section of the
object Smax which is obviously related to the section area of the object of interest.
Recording the first iteration where the front flows out, it gives us the maximum
distance where we must stop propagation.

8.4 Extracting the skeletal information

In the following, we assume that we use the Fast-Marching and the Level-Sets in a
collaborative manner, in five steps:

1. the user input is a seed point for region-growing;

2. the Fast-Marching using the Freezing principle is evolved from this starting
point;

3. this evolution is stopped using either the distance, the user intervention, or an
automatic criterion;

4. the binary mask defined by the propagation gives the initialization of the region
based descriptors kin and kout, as used in section 6.2;

5. the Level-Sets model is evolved with equation 4.6 for a small number of itera-
tions.

The process is really similar to the framework detailed in section 5.4. The Fast-
Marching using the Freezing principle will act as a rough initialization step, which will
provide the binary image of the voxels visited. This mask will also serve to initialize
the different probabilities of the region descriptors defined in section 5.2. First row in
figure 8.8 shows the surfaces of several tubular structures extracted with the Freezing
algorithm. The domain of voxels visited during this first step is used to set correctly
the descriptors of the Level-Sets model, that converges in a few iterations to the
surfaces which are shown in the second row in figure 8.8. Notice that the scheme
used here is in equation (7.1), where forces have been included to restore the distance
function.

In this chapter, we do not implement dedicated algorithms based on the Level-Sets
methods. They are used in a very classical manner, to converge to sub-pixel accuracy
results, on the basis of as-hoc fast algorithms. However, the level of accuracy that
is achieved by the Level-Sets cannot be of course outperformed by the initialization
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Figure 8.8. Final segmentation of vascular objects: First row shows different
vascular objects that have been extracted with the Freezing algorithm - except
the example shown in last column of the right, where the method used was the
competitive fronts algorithm; Second rows is the final result of the segmentation
after 40 iterations.

method. The convergence step they achieved cannot be replaced in any way by the
Fast-Marching.

8.4.1 Combining path and shape extraction

The complete framework for path and surface extraction we have developed will be
illustrated in this section by results on a 3D-RA acquisition of a stenosed vessel,
which is shown in figure 8.9.

Figure 8.9. 3D-RA dataset of an aortic stenosis: left image shows three
orthogonal views of the dataset; right image is a MIP view of the same dataset.

We have shown in the part I of the thesis how to extract a trajectory inside
a tubular structure. In part II of the thesis, we have combined fast and accurate
methods for shape extraction of tube like objects. We now want to combine the
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results of both parts, and extend this facility to the detection of tree-like structures,
and their corresponding set of multiple trajectories, in order to enhance measures and
visualization of pathologies of any tube-shaped object.

We worked upon the extension of the trajectory extraction method, applied for
example to virtual endoscopy in chapter 3 to the case of multiple trajectories. For
example, the dataset in figure 8.9-left is a structure with branches, which pathology -
a stenosis - is clearly visible on the MIP view in figure 8.9-right. The complete study
of this pathology, with minimum interactivity, would be to extract its surface, and all
needed trajectories inside it, in order to give accurate measurements.

Techniques found in the literature

The combination of path and shape representation is a framework already studied as
well in Computer Graphics as in Computer Vision. In Computer Graphics, cylindrical
shapes description is done by implicit surfaces (in the sense of [13, page 223]) defined
by the convolution of a filter kernel with a skeleton. In other words, this distance
surface is a surface that is defined by distance to some set of skeletal elements, like
any curve. But in graphics, the target is to improve visualization and interactivity
over the representation of the object. However, it connects to vision because it is
often convenient to model a shape as a generalized cylinder as done in [132], for
reconstruction of anatomical shapes, as done in [175] by combining the fitting of a
generalized cylinder, and its symmetry axis.

In those methods, the central axis constrain the extraction, and models the tube-
ness of the final object extracted.

Our multiple path extraction method

In our case, the shape is initialized by Fast-Marching, thus a path construction
method, but we are going to use the solution at convergence of the Level-Sets in
order compute the final set of trajectories - i.e. the skeletal information of our object.
Therefore, shapes controls path extraction. This is exactly the kind of methods that
lead to accurate measurements and visualization of the objects:

1. It relies on a sub-pixel shape extraction model; thus the intersection of a cross
section plan and the surface is an improved measure of the objects, while cylin-
ders approximate the model.

2. The Level-Sets enables any change in topology, and there is no constrain on
the initialization of the model, how huge can be the number of branches in the
anatomical object.

3. The paths used for quantification are based on this robust surface extraction
model, increasing the robustness of the measures.

4. The user input is limited to the setting of the root of the tree hierarchy.

Our method is based on the construction of a connectivity map, by looking at several
chosen iterations to the connectivity of the propagating front (i.e. the Alive voxels)
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Figure 8.10. Multiple path extraction algorithm: From left to right, these
are connectivity tests made on the propagation of a wave inside a segmented object,
starting from the voxel designated by label 0, until the whole domain is visited.

and the connectivity of the sets of voxels visited, as shown in figure 8.10. Defining
a distance step, each time this step has been accumulated by the front, we label the
different sets of visited voxels, and we thus detect when a front separate, at a branch,
into several not connected sets.

When the whole domain has been visited, we take for each separate set a rep-
resentative voxels, which is the most far from the starting point, and we set it as
an applicant extremity for back-tracking a trajectory. Notice that the distance step
defines the accuracy of the method, since a too important step will lead to misunder-
standings: on the right image, only the extremity designated by the label 3 will be
eligible for back-tracking, while there are two branches, because the distance step is
bigger than both branches.

Multiple Path Extraction Algorithm

The algorithm we devised for multiple path extraction is mostly inspired from works
on skeletal extraction from binary, or scattered data. It can be easily compared to
morphological processes, but has two advantages: we can choose the scale or accu-
racy of the multiple path extraction, and we can derive this scale from anatomical
knowledge of the data studied. It is a complete framework in the sense that, the path
extraction relies here on a segmentation process which can be as well handled by the
Fast-Marching or the Level-Sets methods. This segmentation step defines a binary
mask M which is one of the main input of our algorithm:

Definition

• a binary mask M which defines the region of interest in the image;

• a penalty image P which will drive the front propagation;

• a distance map D, computed with the method described in section 2.2.3, and a distance
step d, user-defined parameter that controls the accuracy of the end-point extraction;

• a counter cd that recalls the iteration number of the loop in our algorithm;

• a label map L to label each branch detected, nL a label counter, and an array E which
will recall the hierarchy of the branches detected;

• a starting point p0, located at the root of the tree hierarchy.

Initialization

• M(i, j, k) = 1 for all voxel in the region of interest, elsewhere M(i, j, k) = 0;
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• L(i, j, k) = −1 for all voxel in the image domain, nL = 0, and all elements of E [i] are
set to −1;

• We initialize the usual set of data-structures for front propagation, including an action
map A, the distance map D, and a min-heap structure;

• we initialize a classical front propagation method, setting A(p0) = 0 and storing p0 in
the min-heap structure; item the counter cd = d.

Loop

• we propagate the front with Eikonal equation, computed with penalty P on the domain
defined by the mask M;

• for each Trial point p visited in the Fast-Marching algorithm, L(p) is set to the label
of its current Alive neighbor with minimal action;

• if we visit a voxel p with D(p) ≥ cd:

1. we consider the set of Trial points T , that are all stored in the min-heap data
structure, we consider t1, . . . , tk its k subsets of connected components (with
26-connexity in 3D), obtained through a simple connectivity algorithm;

2. In all subset ti, i ∈ [1, . . . , k]

– considering the old label liold
, and the new label linew , we set nL = nL + 1,

linew = nL, and E [linew ] = liold
;

– for all the points p ∈ ti, we set L(p) = linew ;

3. cd = 2× cd;

4. we stop if the whole domain defined by M is visited.

Termination

• we consider all sets Lj , j ∈ [1, . . . , nL] defined by the label map L with different labels
lj ;

• we select the subset of Lk, k ∈ [1, . . . , nL], which have E [lj ] 6= −1 and ∀n ∈ [lj ;nL]
E [n] 6= lj ;

• ∀Lk selected, we find the voxel (i, j, k) with maximum distance D(i, j, k) and set it as
end point for back propagation;

• we back-propagate from all final voxel selected and extract a set of multiple trajecto-
ries.

Figure 8.11 shows several label maps L with cd = 10, 30 and 50. cd is the minimum
size of the branches detected, it is the scale of the algorithm accuracy. If this scale
is chosen small, lots of branches will be detected, but if the scale is increased, the
computation time will decrease as well, because it controls the number of connectivity
tests which are performed on the Trial voxels, during propagation.

illustration on the vascular tree extraction

In figure 8.12, one can observe the complete framework of Fast-Marching initialization
followed by several iterations, using Level-Sets methods, and finally, the extraction of
multiple trajectories inside two different datasets. The computations for the paths are
restricted to a small number of points, located inside the objects of interest (usually
less than 20% of the whole volume, leading to interactive computing times. Those
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Figure 8.11. Labeling algorithm for multiple path extraction: From left to
right, the images show the label map obtained with the multiple path extraction
routine applied with path steps 10, 30 and 50 respectively.

paths are already very useful for virtual inspection of pathologies, for example in the
aorta (as done in the section 3.1), or measurements along the trajectories extracted,
using the techniques detailed in section 7.2. Figure 8.13 shows the result of applying
the multiple path extraction algorithm explained previously. This set of paths is the
basis of the quantification techniques that can be applied on such a dataset (this aorta
presents an Abdominal Aortic Aneurysm).

Originality of this algorithm, towards front propagation techniques applied for
multiple path extraction, as in [101], where the set of endpoints is manually drawn in
the original image. In our case, all trajectories are extracted automatically.

8.4.2 From Trajectories to Tree Extraction

The trajectories obtained with our algorithm can guide virtual endoscopes. They
can also be used for quantification of pathologies, by measuring the variation of the
section of the object, across the curvilinear abscissae of the path extracted. But the
information of trajectory is not related to the whole branching structure and is just
the minimal centered path between two extremities. Therefore, the user is assumed
to know the position in the object of this trajectory. And those trajectories are not
related to each other, leading to possible misunderstanding in this position. Moreover,
this absence of spatial relationship between the paths and the surface disable the
use of further developments like automatic labeling of the branches, and accurate
localization of pathologies. In order to extract the information which is relevant in
order to analyze the surface of the tree-shaped object extracted, we need to extract the
underlying skeleton on the basis of our trajectories, as done in figure 8.14. The process
of extracting the tree structure from the trajectories is simple: during backtracking of
the trajectories, we adjoin those which are close to each other, creating a branching
point. The only parameter is the definition of proximity between trajectories.
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Figure 8.12. Complete method applied to several objects: First row is the
framework applied to the stenosed object of figure 8.9 and second row concerns the
aneurysm shown in figure 6.4 - Left column is the initialization given by the Fast-

Marching method; middle column is the surface obtained after a small number of
iterations of the Level-Sets method; right column shows the multiple trajectories
extracted with the labeling algorithm, by transparency.

Algorithmic implementation

As a second process, we can extract a skeleton of our object, from this set of multiple
trajectories. The initialization use the same input than the multiple path extraction
process, including the final end points extracted.

Definition

• a binary mask M which defines the region of interest in the image;

• a penalty image P which will drive the front propagation, usually this penalty map is
computed using the centering method described in section 2.3;

• the action map U computed with this penalty during the initial multiple path extrac-
tion;

• the starting point p0, located at the root of the tree hierarchy;

• the set of end points ei i ∈ [1;Ne] where Ne is the number of end points extracted.

• a distance step d which defines the minimum distance between two trajectories (this
distance step is chosen bigger than the gradient descent step).
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Figure 8.13. Multiple trajectory extraction from only one seed point:
This figure represents the projection on three orthogonal views of the complete set
of trajectories tracked in the aorta MR dataset which was segmented in figure 8.8
in the second row; the Freezing method for initialization with the Fast-Marching

algorithm has been used to extract centered trajectories.
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Figure 8.14. From trajectories to tree representation: Left image is a set
of trajectories extracted in a segmented object. right image represents the valuable
tree structure needed for quantification.

• another different label map L to label the voxels that are neighbors of a path, which
means that the distance between this voxel (i, j, k) and a path extracted is less than
d;

• an array E to recall the branches detected.

Initialization

• L(i, j, k) = −1 for all voxel in the image domain;

• ne = Ne and ∀i ∈ [1;ne], E [i] = 0.

Loop: for i ∈ [1;Ne]

• we back-propagate from ei, on the action map U using a simple gradient descent
method, as described in equation 2.6;

• at every path step, the position of the new path point is defined by (x, y, z) ∈ IR3

• we consider the vertices of the Cartesian grid that surround −→x = (x, y, z), the voxels
−→n = (i, j, k) ∈ IN3 which verify D2(

−→x ,−→n ) < d, where D is the Euclidean distance;
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• if, for all those vertices (i, j, k) ∈ IN3, L(i, j, k) = −1, we set L(i, j, k) = i, and continue
back-tracking for ei;

• else, if one of the vertices (i, j, k) verifies L(i, j, k) 6= −1, a branching point is detected,
then:

– recall the label l = L(i, j, k);
– ne = ne + 1, ene = (i, j, k);

– E [i] = ene and E [ne] = 0;

– stop back-tracking for ei;

– continue back-tracking, this time for ene , substituting all L(i, j, k) = l by L(i, j, k) =
ne, until another branching point or p0 are found;

• if we reach p0, then stop back-tracking for ei.

Termination

• for all end point ej j ∈ [1;ne], we can consider the couples of endpoints (ej , eE[j]) as
extremities of linear parts of the skeleton (with e0 = p0).

• the multiple paths between couples of points (ej , eE[j]) j ∈ [1;ne] build the skeleton of
our object, at scale cd and distance d.

Figure 8.15 displays the result obtained on the dataset shown in figure 8.9. From

Figure 8.15. Obtaining a tree hierarchy from a set of trajectory: Left
image is the segmented object extracted from the dataset shown in figure 8.9; middle
image is a zoom on two bifurcations of the object, where the trajectories extracted
are displayed; right image is the same point of view on the translucent surface
extracted with the tree extracted from the set of paths.

the set of multiple trajectories, branching points are extracted, as shown in figure 8.15-
right.

Measurements on the tree

The computational cost of the tree extraction finds its justification in the improve-
ment of the measurements along the new set of trajectories available. Figure 8.16
compares the section measurements with multiple path extraction technique, and tree
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Figure 8.16. Comparing results with the multiple path extraction, and
the tree extraction: First row shows images of the segmentation process (a) plus
the multiple paths extraction, visible by transparency (b) and the region of interest
in green that isolate the aneurysm (c) along one of the trajectories; second row
shows the same images (d,e,f) using the tree structure extracted from the same seed
point; last rows shows the variation of the section along the paths that are inside
the aneurysms, for the complete trajectory (g) and for the branch (h).

extraction technique (dataset shown in figure 3.12). The tree extraction, as shown
by transparency on figure 8.16-(e) enables to measure the section along the necessary
subset of the object, delimited by the the two branching point (this subset has been
colored in green on the figure). If this information is plotted across a trajectory in
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the entire object, it is not useful for two reasons

• section information is not valuable at the branching points;

• the position of the part of interest cannot be obtained straightforwardly.

This problem is illustrated in the last row of figure 8.16. The plot of the object section
across the curvilinear abscissae of a trajectory is shown in figure 8.16-(g), versus the
same plot across a branch of the tree extracted in figure 8.16-(h).



Chapter 9

Application à l’Extraction, la

Visualisation, et la Quantification

d’Objets Anatomiques Arborescents

Résumé — A partir des outils de visualisation et de mesure du chapitre 7, et
des outils d’extraction de surfaces et de sequelettes du chapitre 8, nous étudions
plusieurs cas pratiques, dédiés à des objets particuliers. Dans la section 9.2, nous ap-
pliquons notre méthode d’extraction de trajectoires et d’arbre du chapitre précédent
à l’extraction et la quantification des bronches dans les images médicales 3D de
scanners CT. Dans la section 9.3, on considère un tout autre problème: celui du
groupement perceptuel, ou la donnée est un ensemble non-structuré de régions de
l’image. Nous proposons une méthode de reconstruction de structures arborescentes
dans des images médicales tridimensionnelles.

Abstract— Using the several techniques developed in chapters 7 and 8, we develop
applications for medical problems. In section 9.2, we apply the complete multiple
paths and shape extraction framework of chapter 8 to the segmentation and quan-
tification of airways in 3D multi-slice CT scanner images. Finally, in section 9.3
we consider the problem of Perceptual Grouping and contour completion, where
the data is an unstructured set of regions in the image. We propose a new method
which is illustrated on reconstruction of tree structures in 3D angiography images.
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9.1 Application to 3D Vascular Images with Multi-

scale Vessel Enhancement

In this section, we focus on vascular tree extraction, for accurate determination of ves-
sel width (important in grading vascular pathologies, such as stenosis, or aneurysm).
We are particularly interested in using Multiscale Vessel Enhancement techniques of
Frangi et al. [60].

9.1.1 Medical relevance

All methods developed in this chapter are illustrated on the particular problem of
vascular tree extraction in 3D contrast enhanced medical images. The medical interest
of this extraction is mostly accurate determination of vessel width. It is an important
step in grading vascular pathologies, such as stenosis, or aneurysm.

Stenosis quantification

In the carotid arteries, this quantification determines the choice of stroke treatment.
Studies have revealed that patients with severe symptomatic stenosis in the carotids
should undergo surgical treatment, and support the relevance of accurate measure-
ment techniques of vascular segments.

Aneurysm quantification

For explanations on this pathology we refer to section 6.1 where they are studied in the
case of cerebral vessels. Those pathologies, which are roughly speaking “inflations”
of an artery that weak its walls, and can lead to an hemorrhage, occur for example
in the brain and, and in the abdominal aorta (see figure 3.12).

Potential: Multiscale Vessel enhancement

For the definition of the speed function for the Fast-Marching algorithm, we can use
the output of a multi-scale vessel filters based on the Hessian matrix [105, 60]. This
paragraph will be illustrated by an application on the dataset shown in figure 9.11. We
have used the measure defined by Frangi et al. [58] in the following. The symmetric
Hessian matrix H describes local second order intensity variations in the image and
is given as:

Hij =
∂2I

∂xi∂xj
, i, j = 1, . . . , n (9.1)

where I(x) is the n-dimensional image. The Hessian matrix defines an ellipsoid where
the direction of its smallest axis is the direction of minimal second derivative, that
defines the local direction of a tub-like structure. Having extracted the three eigenval-
ues of the Hessian matrix computed at scale σ, ordered |λ1| ≤ |λ2| ≤ |λ3|, we define

1We would like to acknowledge Dr Wiro Niessen, from Image Sciences Institute, University Hos-
pital Utrecht, Netherlands, who provided this image.
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Figure 9.1. Contrast (Gd-DTPA) MRA image of the aorta: Left image
shows three orthogonal views of the dataset; right image is a MIP view.

a vesselness function

ν(s) =

{

0, if λ2 ≥ 0 or λ3 ≥ 0

(1− exp −RA
2

2α2 ) exp −RB
2

2β2 (1− exp −S
2

2c2 ) else

where the ratios RA = |λ2|
|λ3|

and RB = |λ1|√
|λ2λ3|

are used to distinguish between lines

and sheet-like structures and to measure deviation from blob-like structures. These
measures arise from geometric interpretation as

RA =
|λ2|
|λ3|

=
π|λ2λ3|
πλ23

=
largest cross-sectional area/π

(largest axis length/2)2

RB =
|λ1|

√

|λ2λ3|
=

(4π/3)|λ1λ2λ3|
(4π/3)((1/π).π|λ2λ3|)3/2

=
Volume/(4π/3)

largest cross-sectional area/π
3/2

and S =
√

λ1
2 + λ2

2 + λ3
2 is used to reduce influence of the noise due to intensity

variations in the background. See [60] for a detailed explanation of the settings of
each parameter in this measure.

In figure 9.2 you can observe the response of the filter, based on the Hessian
information, at three different scales: σ = 1, 2, 5. Using this information computed

Figure 9.2. Ridge detection in the aorta image From left to right, the measure
obtained at three different scales (σ = 1, 2, 5) and the maximum of the filter response
across all scales (MIP visualization of the 3D images).
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at several scales, the multiscale response of the filter is the maximum of the response
of the filter across all scales, which is shown in figure 9.2-right.

Having computed this measure, we simply use it as speed function, thus propa-
gating faster in the areas with higher filter response, taking

‖∇T (x)‖ = 1

maxσmin≤σ≤σmax
ν(σ,x) + νmin

+ w (9.2)

where σmin and σmax are the minimum and maximum scales at which relevant struc-
tures are expected to be found, νmin is just a constant which ensures that speed
remains strictly positive, and w is the usual offset term introduced in [34]. This
potential will be adapted to bright vascular structures on black background. This
potential gives more information than the simple grey level value, since the filter
response is higher in the center of the vessel.

9.1.2 Proposed solution

Initialization: Freezing method The use of the Freezing improves the resulting
segmentation: Figure 9.3 shows the difference of segmentation obtained with (right
image) and without pruning (middle image). Figure 9.3 demonstrates that the com-
bination of multi-scale vessel enhancement and freezing enhances the segmentation
ability of the Fast-Marching.

Figure 9.3. Comparing classical and freezing propagation in the Aorta:
left image shows the resulting volume obtained using the Fast-Marching with a
penalty model P(x) = max(Imean − I(x), 0) where Imean is the mean value inside
the aorta; middle image shows the result of a wave propagating in the Aorta MR
dataset with a speed based on the Hessian eigenvalues; right image shows the same
result using the Freezing approach of section 8.3.

Stopping: Freezing method This section is illustrated with figure 9.42. Once the
multiscale information is available, we can recall the same data than in the details on

2We would like to acknowledge Dr Wiro Niessen, from Image Sciences Institute, University Hos-
pital Utrecht, Netherlands, who provided this image.
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Figure 9.4. Phantom of a stenosed carotid artery in computed tomog-
raphy angiography (CTA): This example has been chosen for illustration of
the stopping criterion, by propagating from the top of the object with a speed
F = 1 (1 + ‖∇I‖).

the stopping criterion in the previous chapter. If we plot the maximum distance dmax
of section 8.3.1, across iterations while propagating, we will observe the following
profile shown in figure 9.5. A great advantage of this multiscale information is that
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Figure 9.5. Detecting when the front floods outside the object: Left image
is the plot of the maximum distance dmax across iterations; it is clearly visible that
there is is an import change in the slope of the function around a distance maximum
of 300; middle image represents the domain of voxels visited when dmax = 290, and
right image is the same for dmax = 310.

it can be used as a potential for obtaining centered trajectories, with no need to
compute the distance to the object walls.

9.1.3 Comparisons and conclusion of the tree extraction method

Other methods for skeletal representation

In [179], authors build a skeletal representation of an unorganized collection of scat-
tered data points lying on a surface. They capture branching shapes, using a distance
step similar to ours, by computing the k level-sets from the user-defined root of the
tree; and for each of those level-sets, they extract the centroids of connected compo-
nents. In our case it is not necessary to extract the centroids, because it introduces
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uncertainty in the location of the branching points. With a centering penalty P, we
aggregate the paths that are under a user-chosen distance d. This method based
on the centroid extraction can be compared to the very interesting work of Angella
found in [5, 6], which present a deformable and expansible tree as a skeleton extractor,
where each node of the tree is a free particle that propagate into the data, pushed by
repulsive forces coming from other particles and contours. The set of free particles
describes the tree hierarchy. In our case, the sub-voxel precision is very important for
visualization and measurements (see sections 7.1 and 7.2), and the needed number
of particles for achieving this task would lead to huge computing times.

Very similar work can be found in [157], where the author use wavefronts to ex-
tract morphological descriptions of binary images, in particular binary tree structures.
However, bifurcations are detected on a projected image in 2D, then this information
is upgraded to 3D, but still the method is applied iteratively, looking for bifurcations
at each iteration. Our method use a scale parameter cd, as a distance step in our
wavefront, only looking for bifurcations every time the front has crossed a multiple
number of this distance. It reduces greatly computations, and can be parameterized
by the user, who can only look for branches lower than a typical value dmin which is
the upper-bound of our scale parameter.

Morphological techniques, like those in [157], are the main tool used for tree ex-
traction, and lots of techniques, like thinning algorithms are already used in medical
imaging. They start from volume images so that the traditional medial axis transform
of Blum [15] can be applied, as in [130, 143]. However, the purpose of our applica-
tion is to have a smooth set of multiple trajectories. This smoothness is needed for
accurate measurements and visualization along the trajectories. Morphological tech-
niques require post-processing in to remove undesirable small parts of the skeleton.
Smoothing and removing undesirable small parts of the skeleton is done using our
distance step and is very similar to techniques shown in [173], where the scale is also
an input in the algorithm. To conclude with the use of morphological techniques,
the skeletal description we are looking for corresponds to the needed of an accurate
basis for observation and measurements of pathologies. We thus need a smooth and
accurate information: a tree which describes the cylindrical topology of the object
observed. The variation of the section of a tubular shapes leads to error in medial
axis transforms, and to the need of post-processing techniques, to clean the skeleton
obtained, that our method does not need.

Most impressive work on vascular quantification among others can be found in
the PhD thesis of Frangi. He develop a very interesting method based on path and
shape extraction in [58]:

• The author first set the two extremities of a path on the surface obtained through
a iso-surface extraction process;

• the minimal path is extracted on the representation of the surface, using a
technique similar to [90];

• a centering force, based on multi-scale enhancement filtering (see [60]) drives
the minimal path in the center of the tube-shaped object;
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• a circular cross section approximating the vessel is swept along the central vessel
axis extracted previously (swept surface), and creates a deformable cylinder;

• this cylinder initiates a tensor product B-spline surface [142], that fits the bound-
aries of the vessel.

Using both path and shapes representation in the same framework, Frangi proposes
an elegant method for quantification of vessel morphology [59].

In order to highlight important benefits of our method, we are going to compare
our results, that are not completely dedicated to quantification of vascular diseases
in MRA images. However, our method proposes an alternative that may overcome
several drawbacks of his method.

Topology of the objects: In [57] the bifurcations in carotid arteries introduce
errors in the measurements of the stenoses; with our method, bifurcations are localized
and wrong measures near branching points can be omitted.

Branching points: We provide the measures in the whole set of branches of our
objects, setting a unique tree root seed for segmentation and path extraction. In
[57] Frangi gives the measure between the defined user end points (he gives also an
interesting study of the variability of the results across the user initialization in [57]).
In our case, only one point is needed. It enables to reconstruct the whole set of
trajectories inside the object, but it converts this information into a tree hierarchy,
where important information can be separated from the whole.

A result of this property of our method is shown in figure 9.6. In particular,
figure 9.6-(g) is the information contained in the interval [40; 60] in figure 9.6-(e). It
is the same process for figure 9.6-(h) which corresponds to the sub-plot contained in
the interval [190; 250] in figure 9.6-(e). Therefore the tree extraction enables to localize
accurately the information needed, as the stenosis extent for the case presented in the
left column of figure 9.6.

Accuracy of the model the B-spline that extracts the vessel boundaries in [58]
is an approximation of the surface, whereas the zero-level set embedded in φ̃ has
sub-pixel precision.

Conclusion on the vascular extraction method

We have finally a method which provides a sub-pixel information of the position
of the shape. Based on the paths extracted with our fast and robust algorithm, the
quantification rely on an accurate centered position of the path points. Thus measures
and visualization are enhanced (see figure 9.7).

At a matter a fact, this visualization, once paths and shapes are extracted, is
real-time, due to the fast rendering of the triangulation of our implicit model. Thus,
camera trajectory is managed via the paths extracted. A further extension of this
work could be to derive an interface to choose between each branch where to go inside
the model.
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Figure 9.6. Comparison of measurements on the tree and on a trajectory:
Two different datasets are presented, each one in a column (left column dataset
present a stenosed vessel). First row (a,b) displays segmented surfaces and extracted
trees. Second row (c,d) displays the sub-volume of interest in both cases where
sections are performed. Third row (e,f) shows plots of the section measured across
the curvilinear abscissae of a trajectory. Fourth row (g,h) displays the same result
using branches extracted between two bifurcations.
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Figure 9.7. Endoscopic view along one trajectory: The whole set of trajec-
tories is displayed (in yellow) simultaneously with the surface rendering: the user
do not miss any bifurcation since he can see any branch.

9.2 Application to the Bronchial Tree

9.2.1 Medical interest

Extraction of the bronchi and the bronchial tree

First interest of this segmentation is to provide trajectories for a virtual bronchoscopy
system, on the same basis than the virtual colonoscopy tool detailed in section 3.1.

A second important implementation possible is airway tree measurements that can
be used to detect lesions or stenoses, structural abnormalities, and to evaluate airway
reactivity to external stimuli (for example, evaluating asthma impact on the airways
diameters). One must take into account the perspective distortion inherited from the
volume rendering, for optimizing stent fitting for example, and the segmentation of
the complex bronchi can provide an accurate information.

The framework we developed for the vascular tree extraction can be transposed to
this different problem, in order to obtain both surfaces and centerlines of the airways,
in typical datasets of the lungs, like multi-slice CT scanner, where voxels are nearly
isotropic.

Role of the Virtual Bronchoscopy

The bronchoscopy technique has existed since 1897 and represents probably one of
the most frequently used invasive procedures. Even in the hands of a clinically ex-
perienced pulmonologist, there is a risk for the patient. However, the goal of virtual
bronchoscopy (see an example in [75]) is not to replace real bronchoscopy, which has
high advantage of providing a direct inspection of the natural pigmentation which
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can clearly indicate a pathology. And inability to perform biopsies gives virtual bron-
choscopy the role of a detection and much less a characterization technique.

Possible pathologies visible on the multi-slice CT scanner are for example tumors.
Malignant tumors of the lung represent the most frequent cause of cancer death in
males (35%) and female (18%). Since those tumors (benign or malignant) are only
visible on the renderings system when they imply a morphological alteration of the
bronchial wall, virtual bronchoscopy cannot contribute substantially to characteriza-
tion of tumors. Thus, evaluation of virtual bronchoscopy should be restricted to the
morphology of the bronchi and direct visualization of intraluminal masses.

However, one handicap of real endoscopy is its inability to see through the bronchial
wall, whereas all information surrounding the object is available in virtual bron-
choscopy. This handicap is very important since a clinician would like to plan a
biopsy in a location that can be accessed only from the bronchial tree. In this case,
the virtual bronchoscopy enables to determine in advance the optimal access point
for the biopsy procedure.

A further indication for this process is the rare case when the real inspection
is contraindicated, as in the presence of a strong stenosis of a branch, or as in the
presence of an infiltration due to an extensive tumor manifestation, or in the case of
an application in pediatrics, where the necessary sedation can be contraindicated.

Last important improvement brought by the virtual procedure is its clinician
teaching device aspect [18, 125]: it can contribute th education and qualification of
operating personnel (which benefits the patient by the way).

9.2.2 State of the art in Bronchoscopy imaging

Acquisition techniques

Computed Tomography represents the standard examination technique of the thoracic
area, because a natural contrast exists between air and soft tissues, explaining why
the trachea and the bronchial tree are perfectly suited for the generation of a virtual
bronchoscopy. Three different types of CT data can be used:

1. Incremental CT: a slice is imaged in the axial orientation, after which the patient
is shifted to the next position in order to image the next slice. 3D reconstruction
(and hereafter renderings) can be calculated from incremental data only when
the patient lies so still than no motion occurs during the whole examination.
These data are of little use for virtual bronchoscopy;

2. Spiral CT: superior to incremental CT, the patient is shifted during the rotation
of the tube-detector system. It enables to acquire large anatomical regions, like
Thorax, in a single breath-hold. But still, the z-axis resolution is considerably
worse than the in-plane resolution, and is a limiting factor for small bronchi.

3. Multi-slice CT: common systems image four slices at a time. This results in
very low total acquisition time, but can also result in isotropic volume elements
(voxels) in the final 3D dataset. Figure 9.8 displays a volume of interest of a
classical multi-slice CT scanner of the lungs.
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Figure 9.8. 3D Multi-Slice CT scanner of the Lungs: this is an isotropic
volume of interest about 287× 150× 249 voxels.

Multi-slice CT is the ideal imaging modality for obtaining virtual bronchoscopic
renderings of the smaller bronchi, since structures with diameter of 2mm should be-
come clearly visible. However, the huge number of voxels can create a problem, as it
overload the storage capacity of common workstations. Processing time in algorithms
can also become so long than clinical application may not be realistic.

Segmentation techniques

They can be divided in three categories:

1. 2D methods: they can be completely manual, where the contours of the airway
lumen is delineated manually in each axial images, but they strongly depend on
the interobserver variability, and the loss of precision of the 2D segmentation
towards the 3D information. They can also be semi-automatic, starting from
an initial set of contours manually drawn, which is corrected and smoothed
with detection algorithms, or by flooding gradient maps with region-growing in
2D [144]. However, those 2D methods work on the information contained in the
cross-sections of the bronchi contains on not on the whole 3D data.

2. 3D methods: there is of course the usual set of 3D rendering techniques (MPR
, MIP , volume or surface renderings). Other more elaborated methods are
based on 3D region-growing algorithms. Mori et al. [124] detect an optimal
threshold value in order to extract the airways, and once this segmentation is
done, thin the airways to obtain the tree which is input in a recognition process
for automatic labeling [123]. Those methods suffer from limitations due to the
use of a threshold, and problems of accuracy for the small bronchi, since they
provide a binary image as segmentation.

3. 2D to 3D methods: the principle is to segment the airways in each axial slice,
and to reconstruct the 3D segmentation by combining the 2D segmentations,
doing 3D/3D post-processing. Several techniques are based on the detection of
the airways location in 2D [169]. But how important is the enhancement of the
post-processing, the result depends on the 2D initialization, there is no pure 3D
information involved in the detection. However, important improvements have
been done in the field by Fetita [52], as well in 2D/3D as in pure 3D.



186 9 Application to segmentation and visualization of tree structures

We have worked upon the use of our method involving both Fast-Marching and
Level-Sets methods to extract the airways, and the airway tree. We encountered
several problems due to the specificity of the bronchi in CT, during the initialization
step. All tests are detailed in the following.

9.2.3 Applying our framework

Initialization: Region growing

Several problems exist with the use of the Fast-Marching algorithm as a region grow-
ing method for airway segmentation. Since it relies on the edge strength of the airway
walls that weak at several places, the propagating front leaks out into the surround-
ing parenchyma. We have already seen that the Fast-Marching can flood into the
surrounding pixels of the tubular structures, and we have built a method based on
Freezing pixels (see section 8.3.1) in order to avoid leakage. This method was suc-
cessfully applied for vascular tree extraction in chapter 8, using as speed function a
multiscale filtering technique derived from work in [60]. But in the case of the lungs
airway, the grey level information is very different, as shown in figure 9.9. In fig-
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Figure 9.9. Profile of the airway grey level: Left image is a zoom on a 2D axial
slice of the multi-slice reformat image of the lungs, we can distinguish the lumen
in the black circle areas surrounded by the airway walls in bright intensities; right
image is an illustration of the profile of the grey level intensity, along a line crossing
through an airway center.

ure 9.9-right, we observe that the minima occur near the center of the airways and
the maxima occur near the middle of the walls. But this information is relatively
poor, and partial volume effects can occur: as the diameter of the airways decreases,
partial volume averaging begins to increase the value within the lumen, and the Fast-
Marching will flood the parenchyma at a weak wall, as shown in figure 9.10. The
Fast-Marching algorithm is applied in this case with a potential based on the grey
level information. Using P(x) = max (I(x)− Iairways, 0) +w, with Iairways being an
approximate value corresponding to air, cannot provide a result where the propaga-
tion critically depends on the weakness of the edges. Using the grey level information
for the lungs is similar to using the gradient in the vascular contrast enhanced medical
images: it is not valuable. The profile of the airway in figure 9.9-right is somehow
similar to a “Mexican hat”, but the Hessian information given by a measure based on
its eigenvalues will detect the inner and outer walls of the airways, and will not give
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Figure 9.10. Flooding of the Fast-Marching in the parenchyma: the images
are samples of the front propagation process in the lungs airways, with the Freezing

methodology; the frozen pixels are represented in blue whereas the propagating
parts are in white.

a high response in the lumen. Since then, this problem defines the limits of the use of
the Fast-Marching in pre-segmentation, as well as with the use of a more complicated
heuristic such as the Freezing algorithm.

However, there are other ways to create a pre-segmentation which can be input
in a Level-Sets model. Among others, we decided to use methods developed by Mori
et al. in [124]. The principle of this initialization is based on the reason of the failure
of the Fast-Marching method: it focuses on the detection of the flooding inside the
parenchyma. It extracts the inside of the area of the bronchus by tracing voxels with
relatively small CT values corresponding to air without processing across voxels with
relatively large CT values, assuming that the airway area is simply connected.

The method is a simple region-growing in the 3D image, starting from a point
inside the trachea. This point, which will be the root of the final tree hierarchy can
be easily detected in the 3D dataset, as shown in figure 9.8

The algorithm is the following:
Definition

• a start point x0: the region growing needs a seed point for starting. In order to set
a protocol of segmentation, the start point needs to be always initialized in the same
region, inside the trachea, before the first bifurcation in the tracheobronchial tree.
Luckily enough, the trachea can be recognized stably in the multi-slice CT dataset.
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Moreover this seed point will be the root of the tree hierarchy extracted at the end of
the whole process, which enables to reduce user interaction to the setting of the seed
point only.

• an initial threshold value I0, a threshold value Ithreshold with a threshold step dI, for
the original volume image I

• a segmentation defined by a binary maskM whereM(x) = 0 if x is inside the object,
and M(x) = −1 elsewhere.

Initialization

• Ithreshold = I0;

• M(x0) = 0 and M(x) = −1 elsewhere;

Loop:

• at each iteration i, we binarize image I, defining the mask IB where IB(x) = 0 if
I(x) < Ithreshold, IB(x) = −1 elsewhere;

• we apply a connectivity algorithm, to connect to the pixels x that verify M(x) = 0
all voxels y with IB(y) = 0.

• For all voxels y connected, M(y) = 0;

• We countNi the total number of voxels x withM(x) = 0 at iteration i (see figure 9.11);

• If Ni > Nmax, the optimal threshold is Ithreshold and we stop;

• Ithreshold = Ithreshold + dI.
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Figure 9.11. Detection of the optimal threshold value: When the threshold
value is increased, the number of connected voxels below this threshold increases,
until it reaches the optimal value; a superior threshold will lead to the flooding in
the parenchyma.

When the number of segmented voxels exceeds the area threshold value Nmax,
the algorithm is stopped, just before explosion in the number of voxels visited occurs
in figure 9.11.
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Final Segmentation and Automatic Branch extraction

Since the initialization is obtained, the inside and outside regions are used in order
to initialize the region-based forces of the Level-Sets model. In the case of the lungs,
we used the sigmoidal region-based forces formulation for several reasons:

• the computing time is very important, considering the size of the dataset, and
the use of constant forces across time reduces this cost;

• the parenchyma has a distribution very similar to that of the airways. The use
of region-based forces should then induce the use of three different regions: one
for the lumen, one for the parenchyma, and one for the soft tissues (and others).
Managing three regions will greatly increase the computing time.

• if we use two regions instead of three, the parenchyma is contained in the outside
region and reduces greatly the mean and increases the variance of the model.
There is a huge risk that the outside has a variance too important, and shrinks
the lumen segmented. This problem has been already presented in the applica-
tion concerning the visualization of the colon polyps.

Several iterations are necessary in order to extract the lower bronchi, as shown in
figure 9.12. Once this segmentation step is achieved, we extract the trajectories from

Figure 9.12. Three steps of the airways tree segmentation: Left image is
the initialization given by the method [124] described in section 9.2.3; middle image
is the surface of the airways after 40 iterations of the Level-Sets model; right image
shows the whole tree extracted in the airways with the labeling algorithm illustrated
in figure 9.13.

the starting point x0, and we convert it into a tree, using the labeling methods of
section 8.4. We optimize this extraction, in function of the length of the minimal
branch to be extracted, as shown in figure 9.13, where we display the label map for
several minimal length. Since this step represents a computing cost, this minimal
length must be accurately set according to the needs of the clinician (since this length
shrinks with the depth in the bronchial tree).
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Figure 9.13. Labeling of the airways: Using the method described in sec-
tion 8.4, we label the airways segmented, according to a chosen distance step; from
left to right are shown the label maps for respective steps 100, 50 and 20.

9.2.4 Conclusion

Artifacts

Even with multi-slice technology, one problem remains unsolved: cardiac motion can-
not be suppressed, despite fast acquisition. Only a trigger, as employed for cardiac
imaging could provide assistance. This motion extends to the neighboring pulmonary
parenchyma, and results in irregularities in the bronchial wall (see figure 9.14-left).
The impact of this motion onto the segmentation is not clear, but it seems that the

Figure 9.14. Two kind of artifacts in the multi-slice datasets: Left image
shows the motion of the heart in a sagittal slice of the 3D dataset of figure 9.8 during
acquisition; middle image shows the resulting poor segmentation of the lower-left
part of the airways; right image displays the pulsation artifacts carried over from
the aorta onto the trachea: these rings should not be confused with the natural
tracheal cartilage.

surface extracted near the hear in the lower left part of the bronchi is not correctly
segmented (see figure 9.14-middle). These artifacts can be reduced by doing multi-
slice CT acquisition with a trigger, as done for cardiac imaging, taking into account
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cardiac pulsation for the time of acquisition.
Much more striking are artifacts produced by the aortic pulsations, transmitted

to the trachea and the main bronchi: they appear as ring-like structures on the
3D surface, similarly to cartilage rings. However, they can easily be distinguished
from the tracheal cartilages, since they appear horizontal in the lice direction (see
figure 9.14-right). Those rings imply errors in the measures of the airways diameters,
but there is no particular possibility to avoid them, since a correlation with the heart
pulsations exists but is difficult to model.

Perspectives

Results are impressive, and we can easily obtain a virtual bronchoscopic view, using
the tree structure to guide the virtual endoscope and the triangulated surface, ob-
tained through th Marching-Cubes algorithm with the zero-level set of our level-set
function (see figure 9.15)

However, there are several technical improvements that are currently missing

• Improving fast-marching for the airway initialization: the method developed has
failed in giving an accurate initialization. The complex structure of the object,
and the thin-walled bronchi plus the partial volume effect lead to wrong results.
One possible extension could be to modify the speed function, adapting it to
the depth of the current voxels involved in the computation, since the partial
volume effect increases with the depth in the airway tree.

• Reducing the number of iterations of the Level-Sets model: 40 iterations is still
a huge number if each iterations is computed on the whole volume.

• Improving the Level-Sets model: the smaller parts of the bronchi are not recov-
ered, the region-based formulation is not dedicated to the extraction of the thin
curves. Using co-dimension 2 geodesic contours, as done by Lorigo et al. [108] for
vessels in MRA images, and using other expression of the flows like Vasilevskiy
and Siddiqi [177].

• Developments: Mori was using its tree extraction method for automatic labeling
of the bronchial tree [123]. If it is possible to assign the anatomical names to
the bronchial branches extracted from CT images and to display the name of
the currently observed branch on a virtual bronchoscopy image, it will help
clinicians to understand the current observing position. This tree structure can
also be input in a system to assist biopsies in the tracheobronchial tree, as done
in [17].

• Validation: still, clinical evaluation of the method is not done, and in particular
the evaluation of the tree structure extracted should be evaluated with the
choice of the minimal length of the branches extracted.

• Benchmark: a possibility of a benchmark with the tremendous work of Fetita [52,
144] has been scheduled but is not achieved yet.
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Figure 9.15. Virtual Bronchoscopy: the images are samples of a movie auto-
matically generated with the surface and the tree extracted in the 3D dataset with
our Path and Shape extraction framework.
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9.3 Reconstruction of vessels in 2D and 3D images

using Perceptual Grouping

Since their introduction, active contours [82] have been extensively used to find the
contour of an object in an image through the minimization of an energy. In order to
get a set of contours with T-junctions, we need many active contours to be initialized
on the image. The level sets paradigm [113, 23] allows changes in topology. It enables
to get multiple contours by starting with a single one. However, it does not give
satisfying results when there are gaps in the data since the contour may propagate
into a hole and then split into several curves where only one contour is desired. This
is the problem encountered with Perceptual Grouping when we try to group a set of
incomplete contours. For example, in a binary image like in figure 9.16 with a drawing
of a shape with holes, human vision can easily fill in the missing boundaries and form
complete curves. Perceptual Grouping is an old problem in computer vision. It has
been approached more recently with energy methods [164, 72, 187]. These methods
find a criteria for saliency of a curve component or for each point of the image. This
saliency measure is based indirectly on a second order regularization snake-like energy
( [82]) of a path containing the point. However, the final curves are generally obtained
in a second step as ridge lines of the saliency criteria after thresholding. Motivated
by this relationship between energy minimizing curves like snakes and completion
contours, we worked upon finding a set of completion contours on an image as a set
of energy minimizing curves.

Figure 9.16. Examples of connected regions to be completed: The four
regions are the four black components, on a bright background.

In order to solve global minimization for snakes, Cohen and Kimmel [34] used
the minimal paths, as introduced in [87, 86]. The goal was to avoid local minima
without demanding too much on user initialization, which is a main drawback of
classic snakes [29]. Only two end points were needed. The numerical method has
the advantage of being consistent (see [34]) and efficient using the Fast Marching
algorithm introduced in [161]. In [31], the author proposed a way to use this minimal
path approach to find a set of curves drawn from a set of points in the image. We
also introduced a technique that automatically finds a set of key end points. In this



194 9 Application to segmentation and visualization of tree structures

chapter, we extend the previous approach to connected components instead of end
points. In order to obtain a set of most salient contour curves, we find a set of minimal
paths between pairs of connected components.

This approach is then extended for application in the completion of tube-like
structures in 2D and 3D images. The problem is here to complete a partially detected
object, based on some detected connected components that belong to this object.

For Perceptual Grouping , the potential P to be minimized along the curves is
usually an image of edge points that represent simple incomplete shapes, as in figure
9.16. These edge points are represented as a binary image with small potential values
along the edges and high values at the background. The potential could also be defined
as edges weighted by the value of the gradient or as a function of an estimate of the
gradient of the image itself, P = g(‖∇I‖), like in classic snakes. The potential could
also be a grey level image as in [34]. It could also be a more complicated function of
the grey level. In our real examples of vascular structures in 2D and 3D, we use a
potential based on a vesselness filter [60].

We present in Section 9.3.1 how to find a set of curves from a given set of un-
structured points. Grouping the points in connected components, we propose a way
to find the pairs of linked connected components and the paths between them. We
then extend this approach to 3D and show an application in 3D medical images.

9.3.1 Finding Contours from a Set of Connected Components

Minimal Path between two Regions

The method of [34], detailed in the previous section allows to find a minimal path
between two endpoints. This is a straightforward extension to define a minimal path
between two regions of the image. Given two connected regions of the image R0 and
R1, we consider R0 as the starting region and R1 as a set of end points. The problem
is then finding a path minimizing energy among all paths with start point in R0 and
end point in R1. The minimal action is now defined by

U(p) = inf
AR0,p

E(C) = inf
p0∈R0

inf
Ap0,p

E(C) (9.3)

where AR0,p is the set of all paths starting at a point of R0 and ending at p. This
minimal action can be computed the same way as before in table 2.1, with the alive
set initialized as the whole set of points of R0, with U = 0 and trial points being the
set of 4-connexity neighbors of points of R0 that are not in R0. Back-propagation by
gradient descent on U from any point p in the image will give the minimal path that
join this point with region R0.

In order to find a minimal path between region R1 and region R0, we determine
a point p1 ∈ R1 such that U(p1) = minp∈R1

U(p). We then back-propagate from p1
to R0 to find the minimal path between p1 and R0, which is also a minimal path
between R1 and R0.
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Minimal Paths from a Set of Connected Components

We are now interested in finding many or all contours in an image. We assume that
from some preprocessing, or as data, we have an initial set of contours. We denote
Rk the connected components of these contours. We propose to find the contours as
a set of minimal paths that link pairs of regions among the Rk’s. If we also know
which pairs of regions have to be linked together, finding the whole set of contours is
a trivial application of the previous section. The problem we are interested in here is
also to find out which pairs of regions have to be connected by a contour. Since the
set of contours Rk’s is assumed to be given unstructured, we do not know in advance
how the regions connect. This is the key problem that is solved here using a minimal
action map.

Method

Our approach is similar to computing the distance map to a set of regions and their
Voronoi diagram. However, we use here a weighted distance defined through the
potential P . This distance is obtained as the minimal action with respect to P with
zero value at all points of regions Rk. Instead of computing a minimal action map
for each pair of regions, as in Section 9.3.1, we only need to compute one minimal
action map in order to find all paths. At the same time the action map is computed we
determine the pairs of regions that have to be linked together. This is based on finding
meeting points of the propagation fronts. These are saddle points of the minimal
action U . These saddle points were already used for closed boundary extraction
in [34] In Section 1.1.2, we said that calculation of the minimal action can be seen
as the propagation of a front through equation (1.5). Although the minimal action
is computed using fast marching, the level sets of U give the evolution of the front.
During the fast marching algorithm, the boundary of the set of alive points also gives
the position of the front. In the previous section, we had only one front evolving from
the starting region R0. Since all points p of regions Rk are set with U(p) = 0, we
now have one front evolving from each of the starting regions Rk. In what follows
when we talk about front meeting, we mean either the geometric point where the two
fronts coming from different Rk’s meet, or in the discrete algorithm the first alive
point which connects two components from different Rk’s (see Figures 9.17 and 9.18).

We use the fact that given two regions R1 and R2, the saddle point s where
the two fronts starting from each region meet can be used to find the minimal path
between R1 and R2. Indeed, the minimal path between the two regions has to pass
by the meeting point s. This point is the point half way (in energy) on a minimal
path between R1 and R2. Back-propagating from s to R1 and then from s to R2

gives the two halves of the path.

Notations and definitions

Here are some definitions that will be used in what follows. X being a set of points
in the image, UX is the minimal action obtained by Fast Marching with potential P̃
and starting points {p, p ∈ X}. This means that all points of X are initialized as
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Figure 9.17. Minimal Action map from the four regions of the example
of figure 9.16: On the right with a random LUT to show the level sets.

Figure 9.18. Zoom on saddle points between regions: Left image shows the
iso-action levels near the saddle point between R1 and R2

alive points with value 0. All their 4-connexity neighbors that are not in X are trial
points. This is easy to see that UX = minp∈X Up. X may be a connected component
R or a set of connected components.

The label l at a point p is equal to the index k of the region Rk for p closer in
energy to Rk than to other regions Rj . This means that minimal action URk

(p) ≤
URj

(p),∀j 6= k.We define the region Lk = {p/l(p) = k}. If X = ∪jRj , we have UX =
URk

on Lk and the computation of UX is the same as the simultaneous computation
of each URk

on each region Lk. These are the simultaneous fronts starting from each
Rk.

A saddle point s(Ri,Rj) between Ri and Rj is the first point where the front
starting from Ri to compute URi

meets the front starting from Rj to compute URj
;

At this point, URi
and URj

are equal and this is the smallest value for which they
are equal.

Two different regions among the Rk’s will be called linked regions if they are
selected to be linked together. The way we choose to link two regions is to select
some saddle points. Thus regions Ri and Rj are linked regions if their saddle point
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is among the selected ones.
A cycle is a sequence of different regions Rk, 1 ≤ k ≤ K, such that for 1 ≤ k ≤

K − 1, Rk and Rk+1 are linked regions and RK and R1 are also linked regions.

Finding and Selecting Saddle Points

The main goal of our method is to obtain all significant paths joining the given regions.
However, each region should not be connected to all other regions, but only to those
that are closer to them in the energy sense. There are many possibilities for deciding
which regions connect together depending on the kind of data and application. In
some cases, the goal would be to detect closed curves and avoid forming branches, as
in [31]. Then the criterion would be to constrain a region to be linked to at most two
other regions in order to make cycles. In our context, we are interested in detecting
branches and avoiding closed curves. Therefore the criterion for two regions Ri and
Rj to be connected is that their fronts meet without creating a “cycle”.

We see in Figure 9.18 a zoom on the saddle points detected between regions R1

and R2 and R3 and R4. Once a saddle point s(Ri,Rj) is found and selected, back-
propagation relatively to final energy U should be done both ways to Ri and to Rj

to find the two halves of the path between them. We see in Figure 9.19 this back-
propagation at each of the three automatically selected saddle points. They link R1

Figure 9.19. Example with four regions: On the left we show the minimal
paths obtained by back-propagation from the three saddle points to each of the
regions from where the front comes; on the right, and the Voronoi diagram obtained.

to R2, R2 to R3 and R3 to R4. At a saddle point, the gradient is zero, but the
direction of descent towards each point are opposite. For each back-propagation, the
direction of descent is the one relative to each region. This means that in order to
estimate the gradient direction toward Ri, all points in a region different from Li
have their energy put artificially to ∞. This allows finding the good direction for the
gradient descent towards Ri. However, as mentioned earlier, these back-propagations
have to be done only for selected saddle points. In the fast marching algorithm we
have a simple way to find saddle points and update the linked regions.

As defined above, the region Lk associated with a region Rk is the set of points p
of the image such that minimal energy URk

(p) to Rk is smaller than all the URj
(p) to



198 9 Application to segmentation and visualization of tree structures

other regions Rj . The set of such regions Lk covers the whole image, and forms the
Voronoi diagram of the image (see figure 9.19). All saddle points are at a boundary
between two regions Lk. For a point p on the boundary between Lj and Lk, we
have URk

(p) = URj
(p). The saddle point s(Rk,Rj) is a point on this boundary with

minimal value of URk
(p) = URj

(p). This gives us a rule to find the saddle points
during the fast marching algorithm.

Each time two fronts coming from Rk and Rj meet for the first time, we define
the meeting point as s(Rk,Rj). This means that we need to know for each point of
the image from where it comes. This is easy to keep track of its origin by generating
an index map updated at each time a point is set as alive in the algorithm. Each
point of region Rk starts with label k. Each time a point is set as alive, it gets the
same label as the points it was computed from in formula (1.7). In that formula, the
computation of Ui,j depends only on at most two of the four pixels involved. These
two pixels, said A1 and B1, have to be with the same label, except if (i, j) is on the
boundary between two labels. If A1 and B1 are both alive and with different labels
k and l, this means that regions Rk and Rl meet there. If this happens for the first
time, the current point is set as the saddle point s(Rk,Rl) between these regions. A
point on the boundary between Rk and Rl is given the label of the neighbor point
with smaller action A1. At the boundary between two labels there can be a slight
error on labeling. This error of at most one pixel is not important in our context and
could be refined if necessary.

Algorithm

The algorithm for this section is described in Table 9.1 and illustrated in figures
9.17 to 9.19. When there is a large number of Rk’s, this does not change much the
computation time of the minimal action map, but this makes more complex dealing
with the list of linked regions and saddle points and testing for cycles.

The way we chose to test for cycles is as follows. Assume a saddle point between
regions Ri and Rj is found. We then test if there is already a link between these
regions through other regions. This means we are looking for a sequence of different
regions Rk, 1 ≤ k ≤ K, with R1 = Ri and RK = Rj , such that for 1 ≤ k ≤ K − 1,
Rk and Rk+1 are linked regions.

This kind of condition can be easily implemented using a recursive algorithm.
When two regions Ri and Rj are willing to be connected - i.e. that their fronts
meet - a table storing the connectivity between each region enables to detect if a link
already exists between those regions. Having N different regions, we fill a matrix
M(N,N) with zeros, and each time two regions Ri and Rj meet without creating
a cycle, we set M(i, j) = M(j, i) = 1. Thus, when two regions meet, we apply the
algorithm detailed in table 9.2.

If two regions are already linked, the pixel where their fronts meet is not considered
as a valuable candidate for back-propagation. The algorithm stops automatically
when all regions are connected.
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Minimal paths between Regions Rk

• Initialization:

– Rk’s are given

– ∀k, ∀p ∈ Rk, V (p) = 0; l(p) = k; p alive.

– ∀p /∈ ∪kRk, V (p) =∞; l(p) = −1; p is far except 4-connexity neighbors
of Rk’s that are trial with estimate U using equation (1.7).

• Loop for computing V = U∪kRk
:

– Let p = (imin, jmin) be the Trial point with the smallest action U ;

– Move it from the Trial to the Alive set with V(p) = U(p);

– Update l(p) with the same index as point A1 in formula (1.7). If
R(A1) 6= R(B1) and we are in case 1 in table 2.2 where both points
are used and if this is the first time regions of labels l(A1) and l(B1)
meet, s(Rl(A1),Rl(B1)) = p is set as a saddle point between Rl(A1) and
Rl(B1). If adding a link between these regions does not create a cycle,
they are set as linked regions and s(Rl(A1),Rl(B1)) = p is selected,
For each neighbor (i, j) of (imin, jmin):

∗ If (i, j) is Far, add it to the Trial set;

∗ If (i, j) is Trial, update action Ui,j .

• Obtain all paths between selected linked regions by back-propagation each
way from their saddle point (see Section 9.3.1).

Table 9.1. Algorithm of Section 9.3.1

Application

The method can be applied to connected components from a whole set of edge points
or points obtained through a preprocessing. Finding all paths from a given set of
points is interesting in the case of a binary potential defined, like in Figure 9.17, for
Perceptual Grouping . It can be used as well when a special preprocessing is possible,
either on the image itself to extract characteristic points or on the geometry of the
initial set of points to choose more relevant points. We show in figures 9.20 and
9.21 an example of application to a medical image of the hip where the objects of
interest are the vessels. Potential P is defined using ideas from [60] on vesselness filter
(detailed later in section 9.3.2). About vessel detection, see also [177, 107].

9.3.2 Finding a Set of Paths in a 3D Image

Extension to 3D

We now extend our approach to finding a set of 3D minimal paths between regions in
3D images. All definitions and algorithms of section 9.3.1 are not affected by changing
the dimension of the image from 2D to 3D. The main changes are that 4-connexity
in 2D is now 6-connexity in 3D and that we deal with minimal paths and minimal
action in 3D images (see section 2.1 for the 3D extension of the the fast marching).
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Algorithm for Cycle detection when a region Ri meets a region Rj :
Test(i, j,M, i);with
Test(i, j,M, l);

• if M(l, j) = 1, return 1;

• else

– count=0;

– for k ∈ [1, N ] with k 6= i, k 6= j, k 6= l : count + = Test(k, j,M, l);

– return count;

Table 9.2. Cycle detection

Figure 9.20. Multiscale vessel enhancement: First image is the original
dataset; All other images are from left to right the filter response with respective
kernels 1, 3, and 5.

Application to Real Datasets: a MR Image of the Aorta

The problem here is to complete a partially detected object. In figure 3.12 is shown a
3D MR dataset of the aorta, which presents a typical pathology: an abdominal aortic
aneurysm. The anatomical object is made visible on the image by injecting a contrast
product before the image acquisition.

We propose here to give a method for extracting from the grey level image a set
of paths that will represent an approximate skeleton of the tree structure. This is
based on extracting first a set of unstructured voxels or regions that belong to the
object. Notice that [177, 107] give different methods to detect vessels but ours is
much simpler and faster.

For this, we propose to extract valuable information from this dataset, computing
a multi-scale vessel enhancement measure, based on the work of [60] on ridge filters.
Having extracted the three eigenvalues of the Hessian matrix computed at scale σ,
ordered |λ1| ≤ |λ2| ≤ |λ3|, we define the vesselness function as done in the preceding
chapter 8.

In figure 9.22 you can observe the response of the filter, based on the Hessian
information, at three different scales: σ = 1, 5, 10. Visualization is made with Maxi-
mum Intensity Projection (MIP). Using this information computed at several scales,
we can take as potential the maximum of the response of the filter across all scales
(Fig. 9.23-left). And we can easily give a very constrained threshold of this image,
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Figure 9.21. Perceptual Grouping on a 2D Medical Image: left image is
the vesselness potential; middle and right images show that from the set of regions
obtained from thresholding of potential image, our method finds links between these
regions as minimal paths with respect to the potential.

Figure 9.22. Ridge detection at three different scales: σ = 1, 5, 10 (MIP
visualization of the 3D images)

that will lead to sets of unstructured voxels that surely belong to the anatomical
object of interest, as shown in figure 9.23-middle.

Based on this set of regions, we apply our algorithm of section 9.3.1, using the
3D version of the Fast-Marching algorithm presented in section 2.1. We find the set
of paths that connect altogether all the seed regions in our image, leading to the
representation shown in figure 9.23-right.

9.3.3 Conclusion

We presented a new method that finds a set of contour curves in an image. It was
applied to Perceptual Grouping to get complete curves from a set of edge regions with
gaps. The technique is based on finding minimal paths between two end points [34].
However, in our approach, start and end points are not required as initialization.
Given a unstructured set of regions, the pairs of regions that had to be linked by
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Figure 9.23. Perceptual Grouping in the aorta of figure 3.12: from left to
right, visualization of the 3D potential (MIP view) obtained from the different scale
of previous figure; a rough detection of the aorta; the Reconstructed aorta.

minimal paths are automatically found. Once saddle points between pairs of regions
are found, paths are drawn on the image from the selected saddle points to both
points of each pair. This gives the minimal paths between selected pairs of regions.
The whole set of paths completes the initial set of contours and allows to close these
contours. We applied this method in order to reconstruct vascular structures, and we
showed examples for 2D vascular image and 3D medical dataset of the aorta. In case
a refinement is needed, this method could be an efficient way to initialize geodesic
contours. Other developments could lead to applications in roads detection in aerial
images [63].



Conclusion

Résumé et contributions

Dans ce manuscrit, nous nous sommes intéressés à l’étude des courbes et surfaces en
imagerie médicale tridimensionnelle.

Extraction de chemins

Nous avons développé un ensemble de techniques originales, basées sur les travaux
préliminaires de Cohen et Kimmel [34], pour étendre l’extraction de chemins aux
images tridimensionnelles. Nous nous sommes aussi attachés à fournir un éventail
d’implémentations différentes afin de réduire les temps de calculs nécessaires, et de
réduire l’intéraction d’un éventuel utilisateur.

Ces résultats ont mené à diverses applications, dont les plus avancées concernent
en premier lieu l’implémentation d’un système de tracé automatique de chemins pour
l’endoscopie virtuelle, qui a fait par la suite l’objet d’une validation clinique et d’une
application industrielle, puisque ce système est dorénavant intégré dans un produit
commecial, une console de traitement d’images médicales, EasyVision, développée
par Philips Medical Systems. La seconde application est la construction d’un outil
de délinéation intéractive des contours d’un objet dans des images bidimensionnelles,
sur la base du modèle du Live-Wire [49, 127]. L’objéctif était de fournir un outil de
tracé de contours semi-automatique, à l’aide des méthodes de chemins minimaux. Le
résultat intègre une fonctionnalité intéressante au sens que l’utilisateur peut “appren-
dre” au programme quels sont les contours de l’image qu’il recherche. Cette méthode
a fourni des résultats prometteurs, est fera sans doute l’objet d’une intégration à un
environnement de traitement d’image, pour les contours des ventricules du coeur en
ultrasons.

Extraction de surfaces

Dans un deuxième temps nous nous sommes intéressés à l’extraction de surfaces à
l’aide des algorithmes de calcul de chemins minimaux. Nous avons montré le lien
avec des techniques similaires en morphologie mathématique, notamment la Ligne de
partage des eaux [180], et nous avons montré l’intéret d’une telle méthode, qui est
rapide mais approximative, pour initialiser des algorithmes plus complexes, plus “sa-
vants”, mais qui ont des temps de calculs beaucoup trop longs, comme les Ensembles
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de Niveaux. Nous avons présenté une méthode regrouppant ces diverses techniques
en un seul et même algorithme.

Cet algorithme a ensuite été appliqué à des problèmes de segmentation et de
visualisation difficiles, au sens de la topologie des objets à récupérer. En premier
lieu, nous avons extrait des anévrismes cérébraux, qui sont des gonflements sur des
veines du cerveau dont la rupture peut entrainer une hemorragie cérébrale fatale. Ces
anévrismes ont une grande variété de formes et le modèle adéquat de segmentation
ne doit pas présenter d’à priori sur la structure de l’objet à segmenter. Nous avons
ensuite le même principe à la segmentation et la visualisation de polypes du colon,
où nous avons présenté une méthode originale de discrimination des zones à observer,
en utilisant les propriétés de la surface obtenue (principalement sa courbure). Cette
dernière méthode est à l’origine de développements plus poussés pour la détection
automatique des polypes du colon, qui vient de commencer à Philips Medical Systems.

Extraction de structures arborescentes

Finalement dans la dernière partie de la thèse nous nous sommes attachés à adapter
nos algorithmes au cas particulier des structures arborescentes, où l’extraction de
chemins et de surfaces trouve une utilisation originale. Nous avons commencé par
développer une technique de segmentation rapide, avec une initialisation très limitée
(à un point), adaptée aux structures tubulaires, sans aucune contrainte sur la topologie
de l’objet final. Nous avons ensuite fourni un moyen d’obtenir une segmentation de
précision sous-voxélique utilisant le premier algorithme comme initialisation.

De plus, pour offrir la possibilité d’une analyse complète d’un réseau arborescent,
il faut pouvoir fournir les outils pour d’une part une navigation intelligente dans des
données 3D, et d’autre part un moyen d’indexation pour le repérage au sein de cette
structure. Nous avons tout d’abord élargi les capacités de notre système d’extraction
de trajectoires à l’extraction d’un ensemble de trajectoires, puis au cas de l’extraction
d’arborescences.

Ces techniques ont ensuite été appliquées à la segmentation et la reconstruction de
réseaux vasculaires et artériels, dans des images de produit de contraste tridimension-
nelles. Comparant les résultats obtenus à l’état de l’art dans ce domaine, nous con-
cluons de la validité de notre méthode qui donne avantageusement une précision sous-
voxélique des surfaces de nos objets tubulaires, en des temps intéractifs. L’utilisation
de l’information de structure arborescente nous permet de localiser l’information de
section des objets qui nous permet clairement de distinguer les pathologies dont ils
font l’objet, comme les sténoses et les anévrismes.

Problèmes rencontrés et Perspectives

Il reste malgré tout que les techniques d’extraction d’arborescences n’ont pas fait
l’objet à l’heure actuelle de validation clinique. L’exploitation des résultats montrent
que la méthode d’initialisation, si elle est très rapide, ne donne pas totalement satis-
faction au sens qu’elle peut ne pas récupérer des branches de nos structures qui sont
très fines, auquel cas, la méthode de reconstruction de la section 9.3 peut s’avérer
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intéressante. Mais ce développement n’a pas été fait à l’heure actuelle.
Donc les perspectives de ce travail portent essentiellement sur une étape de vali-

dation clinique, comme cela a pu être fait dans le cas de l’endoscopie virtuelle. Quoi
qu’il en soit chacune des applications présentées à chaque partie donne la direction
pour de possibles développements, comme la visualisation de polypes, et l’extraction
de structures arborescentes.

Mais les méthodes mathématiques mises en oeuvre pour l’extraction de chemins,
et l’extraction de surfaces que nous avons développées dans ce manuscrit peuvent être
utilisées dans un cadre beaucoup plus général que l’imagerie médicale et donner lieu
à des applications dans d’autres cadres industriels.
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in 1992. During two years, he endured the preparatory classes for French Engineering
schools (Lycée Claude Bernard, Paris), and decided, instead of continuing a third
year, to enter university.

In June 1997, he received a Bachelor of Science degree in Mathematics and Computer
Science from Paris Dauphine University. And in September 1998, he received a Master
of Science with honors in Mathematics, Image Processing and Artificial Intelligence,
at CMLA laboratory, Ecole Normale Superieure, Cachan. His graduation project
concerned the development of a path tracker for virtual endoscopy in 3D medical
image data by means of shortest path techniques and was carried out at the Medical
Imaging Systems (MediSys) group of Philips Research France(PRF), in cooperation
with EasyVision Advanced Development group of Philips Medical Systems (Best, the
Netherlands).

In the subsequent month, he started as a Ph.D. student at the CEREMADE Labo-
ratory, University Paris Dauphine, on a research project concerning the extraction of
paths and surfaces in medical imaging using level-sets framework. The project was
carried out in the MediSYs Department of PRF (Suresnes, France). The results are
described in this thesis.

He was awarded a post-doctoral fellowship, for research on electron microscopy and
confocal microscope imaging, to be carried out at the Computing Sciences Division in
cooperation with the Life Science Division, Lawrence Berkeley National Laboratory
(Berkeley, CA, United States). This project will start in January 2002.



Extraction de Courbes et Surfaces par Méthodes de Chemins
Minimaux et Ensembles de Niveaux. Applications en Imagerie

Medicale 3D.

Thomas Deschamps
Medisys - Philips Recherche France, B.P. 301, 92156 Suresnes Cédex, France.

Dans cette thèse nous nous interessons à l’utilisation des méthodes de chemins minimaux
et des méthodes de contours actifs par Ensembles de Niveaux, pour l’extraction de courbes
et de surfaces dans des images médicales 3D.

Dans un premier temps, nous nous sommes attachés à proposer un eventail varié de
techniques d’extraction de chemins minimaux dans des images 2D et 3D, basées sur la
résolution de l’équation Eikonal par l’algorithme du Fast Marching. Nous avons montré
des résultats de ces techniques appliquées à des problèmes d’imagerie médicale concrets,
notamment en construction de trajectoires 3D pour l’endoscopie virtuelle, et en segmentation
interactive, avec possibilité d’apprentissage.

Dans un deuxième temps, nous nous sommes interessés à l’extraction de surfaces. Nous
avons developpé un algorithme rapide de pré-segmentation, sur la base du formalisme des
chemins minimaux. Nous avons étudié en détail la mise en place d’une collaboration entre
cette méthode et celle des Ensembles de Niveaux, dont un des avantages communs est de ne
pas avoir d’à priori sur la topologie de l’objet à segmenter. Cette méthode collaborative a
ensuite été testée sur des problèmes de segmentation et de visualisation de pathologies telles
que les anévrismes cérébraux et les polypes du colon.

Dans un troisième temps nous avons fusionné les résultats des deux premieres parties

pour obtenir l’extraction de surfaces, et des squelettes d’objets anatomiques tubulaires. Les

squelettes des surfaces fournissent des trajectoires que nous utilisons pour déplacer des cam-

eras virtuelles, et nous servent à définir les sections des objets lorsque nous voulons mesurer

l’étendue d’une pathologie. La dernière partie regroupe des applications de ces méthodes

à l’extraction de structures arborescentes. Nous étudions le cas des arbres vasculaires dans

des images médicales 3D de produit de contraste, ainsi que le problème plus difficile de

l’extraction de l’arbre bronchique sur des images scanners des poumons.

Mots clés : Chemins minimaux, modèles déformables implicites, segmentation, im-

agerie médicale 3D, méthodes variationnelles, Level-Sets, Fast-Marching.

Curve and Shape Extraction with Minimal Path and
Level-Sets techniques. Applications to 3D Medical Imaging.

In this thesis, we focus on the use of minimal path techniques and Level-Sets active
contours, for curve and shape extraction in 3D medical images.

In the first part of thesis, we worked upon the reduction of the computing cost for path
extraction. We proposed several path extraction algorithms for 2D as well as for 3D images.
And we applied those techniques to real medical imaging problems, in particular automatic
path extraction for virtual endoscopy and interactive and real-time path extraction with
on-the-fly training.

In the second part, we focused on surface extraction. We developed a fast algorithm for
pre-segmentation, on the basis of the minimal path formalism of the first part. We designed
a collaborative method between this algorithm and a Level-Sets formulation of the problem,
which advantage is to be able to handle any topological change of the surfaces segmented.
This method was tested on different segmentation problems, such as brain aneurysms and
colon polyps, where target is accuracy of the segmentation, and enhanced visualization of
the pathologies.

In the last part of the thesis, we mixed results from previous part to design a specific
method for tubular shape description and segmentation, where description is the extraction
of the underlying skeleton of our objects.

The skeletons are trajectories inside our objects, which are used as well for virtual

inspection of pathologies, as for accurate definition of cross-sections of our tubular objects.

In the last chapter we show applications of our algorithms to the extraction of branching

structures. We study the vascular tree extraction in contrast enhanced medical images, and

we apply the same principle to the more complex problem of the bronchial tree extraction

in multi-slice CT scanners of the lungs.

Keywords: Minimal Paths, implicit deformable models, segmentation, 3D medical

imaging, variational methods, Level-Sets, Fast-Marching.




